Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Apr 1;219(1):293–299. doi: 10.1042/bj2190293

Regulation of cyclic AMP phosphodiesterase from Mucor rouxii by phosphorylation and proteolysis. Interrelationship of the activatable and insensitive forms of the enzyme.

N Kerner, S Moreno, S Passeron
PMCID: PMC1153476  PMID: 6326757

Abstract

DEAE-cellulose chromatography of mycelial extracts of Mucor rouxii grown to mid-exponential phase resolves two types of low-Km cyclic AMP phosphodiesterase (EC 3.1.4.17; PDE): PDE I, highly activatable (4-6-fold) by phosphorylation or proteolysis, and PDE II, unresponsive to activation. The enzymic profile of PDE activity obtained from germlings shows only PDE I activity, whereas PDE activity from mycelia grown to stationary phase is eluted from the DEAE-cellulose column at the position of PDE II, and like PDE II is unresponsive to activation. Endogenous proteolysis or controlled trypsin treatment transforms PDE I into PDE II. The insensitive forms of PDE exhibit a slightly smaller sedimentation coefficient than the activatable forms, as judged by sucrose-gradient centrifugation. The basal activity of the highly activatable form of PDE is elevated almost to the value in the presence of trypsin on storage at 4 degrees C in the absence of proteinase inhibitors. Benzamidine, leupeptin, antipain or EGTA prevents the activation produced by storage. PDE I remains strongly activatable by phosphorylation and proteolysis after resolution by polyacrylamide-gel electrophoresis.

Full text

PDF
293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTNICKI-GARCIA S., NICKERSON W. J. Induction of yeast-like development in Mucor by carbon dioxide. J Bacteriol. 1962 Oct;84:829–840. doi: 10.1128/jb.84.4.829-840.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beavo J. A., Hansen R. S., Harrison S. A., Hurwitz R. L., Martins T. J., Mumby M. C. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):387–410. doi: 10.1016/0303-7207(82)90135-6. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cantore M. L., Galvagno M. A., Passeron S. cAMP levels and in situ measurement of adenylate cyclase and cAMP phosphodiesterase activities during yeast-to-hyphae transition in the dimorphic fungus Mucor rouxii. Cell Biol Int Rep. 1983 Nov;7(11):947–954. doi: 10.1016/0309-1651(83)90214-x. [DOI] [PubMed] [Google Scholar]
  5. Epstein P. M., Pledger W. J., Gardner E. A., Stancel G. M., Thompson W. J., Strada S. J. Activation of mammalian cyclic AMP phosphodiesterases by trypsin. Biochim Biophys Acta. 1978 Dec 8;527(2):442–455. doi: 10.1016/0005-2744(78)90358-3. [DOI] [PubMed] [Google Scholar]
  6. Galvagno M. A., Moreno S., Cantore M. L., Passeron S. Cyclic adenosine 3',5'-monophosphate phosphodiesterase from Mucor rouxii: regulation of enzyme activity by phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 1979 Aug 13;89(3):779–785. doi: 10.1016/0006-291x(79)91846-1. [DOI] [PubMed] [Google Scholar]
  7. Haidle C. W., Storck R. Control of dimorphism in Mucor rouxii. J Bacteriol. 1966 Oct;92(4):1236–1244. doi: 10.1128/jb.92.4.1236-1244.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moreno S., Galvagno M. A., Passeron S. Control of Mucor rouxii adenosine 3':5'-monophosphate phosphodiesterase by phosphorylation--dephosphorylation and proteolysis. Arch Biochem Biophys. 1982 Apr 1;214(2):573–580. doi: 10.1016/0003-9861(82)90062-5. [DOI] [PubMed] [Google Scholar]
  9. Moreno S., Passeron S. Further studies on cyclic adenosine 3':5'-monophosphate protein kinase from dimorphic fungus Mucor rouxii. Arch Biochem Biophys. 1980 Feb;199(2):321–330. doi: 10.1016/0003-9861(80)90287-8. [DOI] [PubMed] [Google Scholar]
  10. Moreno S., Paveto C., Passeron S. Multiple protein kinase activities in the dimorphic fungus Mucor rouxii. Comparison with a cyclic adenosine 3',5'-monophosphate binding protein. Arch Biochem Biophys. 1977 Apr 30;180(2):225–231. doi: 10.1016/0003-9861(77)90032-7. [DOI] [PubMed] [Google Scholar]
  11. Narindrasorasak S., Tan L. U., Seth P. K., Sanwal B. D. Regulation of cyclic adenosine 3':5'-monophosphate phosphodiesterases. Interrelationship of the various forms in rat skeletal myoblasts and adult muscle. J Biol Chem. 1982 Apr 25;257(8):4618–4626. [PubMed] [Google Scholar]
  12. Paveto C., Epstein A., Passeron S. Studies on cyclic adenosine 3' ,5'-monophosphate levels, Adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii. Arch Biochem Biophys. 1975 Aug;169(2):449–457. doi: 10.1016/0003-9861(75)90187-3. [DOI] [PubMed] [Google Scholar]
  13. Thompson W. J., Ross C. P., Pledger W. J., Strada S. J., Banner R. L., Hersh E. M. Cyclic adenosine 3':5'-monophosphate phosphodiesterase. Distinct forms in human lymphocytes and monocytes. J Biol Chem. 1976 Aug 25;251(16):4922–4929. [PubMed] [Google Scholar]
  14. Tucker M. M., Robinson J. B., Jr, Stellwagen E. The effect of proteolysis on the calmodulin activation of cyclic nucleotide phosphodiesterase. J Biol Chem. 1981 Sep 10;256(17):9051–9058. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES