Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Apr 1;219(1):333–336. doi: 10.1042/bj2190333

Changes in content and secretion of pancreatic enzymes in the obese Zucker rat.

R Bruzzone, E R Trimble, A Gjinovci, A E Renold
PMCID: PMC1153483  PMID: 6202297

Abstract

The contents of three major digestive enzymes (amylase, lipase and chymotrypsinogen) were measured in the obese Zucker rat. Only minimal changes were found in 7-week-old rats, but in adult obese rats (14-16 weeks) the amylase content was decreased by 50%, whereas the lipase and chymotrypsinogen contents were increased by 45% and 20%, respectively, compared with lean controls. Abnormalities of enzyme secretion were also found. Since the changes observed in enzyme proportions in adult obese Zucker rats are qualitatively similar to those observed in insulinopenic diabetes and other states associated with decreased glucose metabolism, it is speculated that the abnormalities found in the obese Zucker rat may be due to decreased glucose metabolism in the exocrine tissue consequent to insulin resistance.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENABDELJLIL A., PALLA J. C., DESNUELLE P. EFFECT OF INSULIN ON PANCREATIC AMYLASE AND CHYMOTRYPSINOGEN. Biochem Biophys Res Commun. 1965 Jan 4;18:71–75. doi: 10.1016/0006-291x(65)90884-3. [DOI] [PubMed] [Google Scholar]
  2. Bazin R., Lavau M. Diet composition and insulin effect on amylase to lipase ratio in pancreas of diabetic rats. Digestion. 1979;19(6):386–391. doi: 10.1159/000198399. [DOI] [PubMed] [Google Scholar]
  3. Bazin R., Lavau M. Effects of high-fat diet on glucose metabolism in isolated pancreatic acini of rats. Am J Physiol. 1982 Dec;243(6):G448–G454. doi: 10.1152/ajpgi.1982.243.6.G448. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Carlsö B., Danielsson A., Helander H. F. Effects of starvation on amylase storage in mouse pancreas and parotid gland. A biochemical and morphometric study. Acta Hepatogastroenterol (Stuttg) 1974 Feb;21(1):48–57. [PubMed] [Google Scholar]
  6. Christophe J., Camus J., Deschodt-Lanckman M., Rathe J., Robberecht P., Vandermeers-Piret M. C., Vandermeers A. Factors regulating biosynthesis, intracellular transport and secretion of amylase and lipase in the rat exocrine pancreas. Horm Metab Res. 1971 Nov;3(6):393–403. doi: 10.1055/s-0028-1094128. [DOI] [PubMed] [Google Scholar]
  7. Crettaz M., Prentki M., Zaninetti D., Jeanrenaud B. Insulin resistance in soleus muscle from obese Zucker rats. Involvement of several defective sites. Biochem J. 1980 Feb 15;186(2):525–534. doi: 10.1042/bj1860525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUMMEL B. C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol. 1959 Dec;37:1393–1399. [PubMed] [Google Scholar]
  9. Korc M., Owerbach D., Quinto C., Rutter W. J. Pancreatic islet-acinar cell interaction: amylase messenger RNA levels ar determined by insulin. Science. 1981 Jul 17;213(4505):351–353. doi: 10.1126/science.6166044. [DOI] [PubMed] [Google Scholar]
  10. Lee P. C., Brooks S., Lebenthal E. Effect of fasting and refeeding on pancreatic enzymes and secretagogue responsiveness in rats. Am J Physiol. 1982 Mar;242(3):G215–G221. doi: 10.1152/ajpgi.1982.242.3.G215. [DOI] [PubMed] [Google Scholar]
  11. McLaughlin C. L., Peikin S. R., Baile C. A. Decreased pancreatic exocrine response to cholecystokinin in Zucker obese rats. Am J Physiol. 1982 Jun;242(6):G612–G619. doi: 10.1152/ajpgi.1982.242.6.G612. [DOI] [PubMed] [Google Scholar]
  12. Olefsky J. M. The effects of spontaneous obesity on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J Clin Invest. 1976 Apr;57(4):842–851. doi: 10.1172/JCI108360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Richardson D. K., Czech M. P. Primary role of decreased fatty acid synthesis in insulin resistance of large rat adipocytes. Am J Physiol. 1978 Feb;234(2):E182–E189. doi: 10.1152/ajpendo.1978.234.2.E182. [DOI] [PubMed] [Google Scholar]
  14. Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
  15. Schneeman B. O., Inman M. D., Stern J. S. Pancreatic enzyme activity in obese and lean Zucker rats: a developmental study. J Nutr. 1983 Apr;113(4):921–925. doi: 10.1093/jn/113.4.921. [DOI] [PubMed] [Google Scholar]
  16. Susini C., Lavau M. In-vitro and in-vivo responsiveness of muscle and adipose tissue to insulin in rats rendered obese by a high-fat diet. Diabetes. 1978 Feb;27(2):114–120. doi: 10.2337/diab.27.2.114. [DOI] [PubMed] [Google Scholar]
  17. Söling H. D., Unger K. O. The role of insulin in the regulation of -amylase synthesis in the rat pancreas. Eur J Clin Invest. 1972 Jun;2(4):199–212. doi: 10.1111/j.1365-2362.1972.tb00645.x. [DOI] [PubMed] [Google Scholar]
  18. Terrettaz J., Jeanrenaud B. In vivo hepatic and peripheral insulin resistance in genetically obese (fa/fa) rats. Endocrinology. 1983 Apr;112(4):1346–1351. doi: 10.1210/endo-112-4-1346. [DOI] [PubMed] [Google Scholar]
  19. Trimble E. R., Halban P. A., Wollheim C. B., Renold A. E. Functional differences between rat islets of ventral and dorsal pancreatic origin. J Clin Invest. 1982 Feb;69(2):405–413. doi: 10.1172/JCI110464. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES