Abstract
It has been shown recently [Go (1981) Nature (London) 291, 90-92; Blake (1983) Trends Biochem Sci. 8, 11-13] that the exonic regions of the genes of proteins haemoglobin, lysozyme and immunoglobin correspond closely to the compactly folded structural units. Despite the absence of classical domain structures in tRNA compared with those found in several proteins, close inspection of certain features in the distance maps obtained for yeast tRNAPhe using the conformationally equivalent heminucleotide scheme reveals that a similar situation might also be present in ribonucleic acids such as tRNA species and the exonic sequences of their genes. Also it seems possible that certain segments of yeast tRNAPhe may be characterized as possessing a domain-like character, and this seems to provide stereochemical support for possible conservation of L-shape structure for tRNA species lacking the entire dihydrouridine arm such as those found in mitochondria.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brennan T., Sundaralingam M. Structlre of transfer RNA molecules containing the long variable loop. Nucleic Acids Res. 1976 Nov;3(11):3235–3250. doi: 10.1093/nar/3.11.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deno H., Kato A., Shinozaki K., Sugiura M. Nucleotide sequences of tobacco chloroplast genes for elongator tRNAMet and tRNAVal (UAC): the tRNAVal (UAC) gene contains a long intron. Nucleic Acids Res. 1982 Dec 11;10(23):7511–7520. doi: 10.1093/nar/10.23.7511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gauss D. H., Sprinzl M. Compilation of tRNA sequences. Nucleic Acids Res. 1983 Jan 11;11(1):r1–53. [PMC free article] [PubMed] [Google Scholar]
- Go M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature. 1981 May 7;291(5810):90–92. doi: 10.1038/291090a0. [DOI] [PubMed] [Google Scholar]
- Janin J., Wodak S. J. Structural domains in proteins and their role in the dynamics of protein function. Prog Biophys Mol Biol. 1983;42(1):21–78. doi: 10.1016/0079-6107(83)90003-2. [DOI] [PubMed] [Google Scholar]
- Malathi R., Yathindra N. Polynucleotide folding in yeast tRNAPhe: elucidation of short-, medium-, and long-range interactions of sugar-phosphate-sugar backbone and base using a "blocked" nucleotide probe. Biopolymers. 1982 Oct;21(10):2033–2047. doi: 10.1002/bip.360211008. [DOI] [PubMed] [Google Scholar]
- Malathi R., Yathindra N. Secondary and tertiary structural foldings in tRNA. A diagonal plot analysis using the blocked nucleotide scheme. Biochem J. 1982 Aug 1;205(2):457–460. doi: 10.1042/bj2050457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quigley G. J., Seeman N. C., Wang A. H., Suddath F. L., Rich A. Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles. Nucleic Acids Res. 1975 Dec;2(12):2329–2341. doi: 10.1093/nar/2.12.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
- Sundaralingam M., Mizuno H., Stout C. D., Rao S. T., Liedman M., Yathindra N. Mechanisms of chain folding in nucleic acids. The (omega, omega) plot and its correlation to the nucleotide geometry in yeast tRNAPhe1. Nucleic Acids Res. 1976 Oct;3(10):2471–2484. doi: 10.1093/nar/3.10.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Bruijn M. H., Schreier P. H., Eperon I. C., Barrell B. G., Chen E. Y., Armstrong P. W., Wong J. F., Roe B. A. A mammalian mitochondrial serine transfer RNA lacking the "dihydrouridine" loop and stem. Nucleic Acids Res. 1980 Nov 25;8(22):5213–5222. doi: 10.1093/nar/8.22.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]
