Abstract
The dimerization equilibrium of deuteroporphyrin IX and of mesoporphyrin IX in aqueous solutions were studied by fluorimetric techniques over the 0.01-1 microM concentration range, where dimerization is the dominant aggregation process. Deuteroporphyrin IX was studied at several temperatures over the range 22-37 degrees C, and mesoporphyrin at 25 and 37 degrees C. The magnitudes determined for the dimerization equilibrium constants (25 degrees C, neutral pH, phosphate-buffered saline) are 2.3 X 10(6)M-1 and 5.4 X 10(6)M-1 for the deutero and meso derivatives respectively. The meso, deutero and haemato species tested show a similar temperature effect, namely dimerization decreasing with increasing temperature, indicating the involvement of a negative enthalpy change. Van't Hoff isochore of the dimerization constants determined for deuteroporphyrin IX was linear within the temperature range of 22-37 degrees C, allowing the calculation of the thermodynamic parameters. For deuteroporphyrin dimerization, those were found to be delta G0 = -36. 4kJ X mol-1; delta H0 = -46. 0kJ X mol-1 and delta S0 = -32.2J X K-1 X mol-1 (at neutral pH, 25 degrees C, phosphate-buffered saline), showing the process to be enthalpy-driven. Similar trends have been found for porphyrin species other than those studied here. Our data fit with a hypothesis giving a major role to the solvent in driving porphyrins to aggregate in aqueous solution. The magnitudes and directions of the energetic changes fit better with the expectation of the ' solvophobic force' theory predicting enthalpy-driven association, than with the classic hydrophobic bonding, predicting the association to be entropy-driven.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benson R. C., Jr, Farrow G. M., Kinsey J. H., Cortese D. A., Zincke H., Utz D. C. Detection and localization of In situ carcinoma of the bladder with hematoporphyrin derivative. Mayo Clin Proc. 1982 Sep;57(9):548–555. [PubMed] [Google Scholar]
- Brown S. B., Hatzikonstantinou H., Herries D. G. The structure of porphyrins and haems in aqueous solution. Int J Biochem. 1980;12(5-6):701–707. doi: 10.1016/0020-711x(80)90147-0. [DOI] [PubMed] [Google Scholar]
- Brown S. B., Shillcock M., Jones P. Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochem J. 1976 Feb 1;153(2):279–285. doi: 10.1042/bj1530279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bugelski P. J., Porter C. W., Dougherty T. J. Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse. Cancer Res. 1981 Nov;41(11 Pt 1):4606–4612. [PubMed] [Google Scholar]
- Crothers D. M., Ratner D. I. Thermodynamic studies of a model system for hydrophobic bonding. Biochemistry. 1968 May;7(5):1823–1827. doi: 10.1021/bi00845a029. [DOI] [PubMed] [Google Scholar]
- Crothers D. M., Sabol S. L., Ratner D. I., Müller W. Studies concerning the behavior of actinomycin in solution. Biochemistry. 1968 May;7(5):1817–1823. doi: 10.1021/bi00845a028. [DOI] [PubMed] [Google Scholar]
- Dougherty T. J., Lawrence G., Kaufman J. H., Boyle D., Weishaupt K. R., Goldfarb A. Photoradiation in the treatment of recurrent breast carcinoma. J Natl Cancer Inst. 1979 Feb;62(2):231–237. [PubMed] [Google Scholar]
- KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
- Kessel D. Components of hematoporphyrin derivatives and their tumor-localizing capacity. Cancer Res. 1982 May;42(5):1703–1706. [PubMed] [Google Scholar]
- Kessel D. Effects of photoactivated porphyrins at the cell surface of leukemia L1210 cells. Biochemistry. 1977 Jul 26;16(15):3443–3449. doi: 10.1021/bi00634a023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessel D. Transport and binding of hematoporphyrin derivative and related porphyrins by murine leukemia L1210 cells. Cancer Res. 1981 Apr;41(4):1318–1323. [PubMed] [Google Scholar]
- LIPSON R. L., BALDES E. J., OLSEN A. M. The use of a derivative of hematoporhyrin in tumor detection. J Natl Cancer Inst. 1961 Jan;26:1–11. [PubMed] [Google Scholar]
- Margalit R., Cohen S. Studies of hematoporphyrin and hematoporphyrin derivative equilibria in heterogeneous systems. Porphyrin-liposome binding and porphyrin aqueous dimerization. Biochim Biophys Acta. 1983 Dec 21;736(2):163–170. doi: 10.1016/0005-2736(83)90280-8. [DOI] [PubMed] [Google Scholar]
- Margalit R., Shaklai N., Cohen S. Fluorimetric studies on the dimerization equilibrium of protoporphyrin IX and its haemato derivative. Biochem J. 1983 Feb 1;209(2):547–552. doi: 10.1042/bj2090547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moan J., Christensen T., Sommer S. The main photosensitizing components of hematoporphyrin derivative. Cancer Lett. 1982 Feb;15(2):161–166. doi: 10.1016/0304-3835(82)90046-5. [DOI] [PubMed] [Google Scholar]
- Moan J., Waksvik H., Christensen T. DNA single-strand breaks and sister chromatid exchanges induced by treatment with hematoporphyrin and light or by x-rays in human NHIK 3025 cells. Cancer Res. 1980 Aug;40(8 Pt 1):2915–2918. [PubMed] [Google Scholar]
- White W. I., Plane R. A. A homologous series of water-soluble porphyrins and metalloporphyrins: synthesis, dimerization, protonation and self-complexation. Bioinorg Chem. 1974 Oct;4(1):21–35. doi: 10.1016/s0006-3061(00)80172-6. [DOI] [PubMed] [Google Scholar]
