Abstract
Individual native nuclease activities from human leucocytes are separated by using two-dimensional gel electrophoresis in an apparatus that allows the simultaneous running of 28 gels. Proteins are separated by isoelectric focusing in a disc gel, followed by electrophoresis into a slab gel containing DNA. Protein denaturants are avoided in the second dimension by the use of a running pH well above the optimal pH for DNAase (deoxyribonuclease) activity. Electrophoresed gels are incubated in appropriate buffers to activate nuclease activity. After staining for intact DNA, the positions of active enzymes, unobscured by the presence of other proteins, are revealed as colourless spots in a reddish-purple field. The technique is easy to use and is sensitive to 50pg of DNAase I. Versatility is provided by the use of either acidic or basic electrophoresis running buffers and by the use of specific gel incubation conditions to reveal different sets of enzyme activities. Two DNAases active at pH 7.4 in the presence of Mg2+ and Ca2+, and sixteen DNAases active at acidic pH and not requiring metals, are detected. Treatment of the human enzymes with specific glycosidases reveals that many of the human DNAases are glycoproteins containing negatively charged moieties and may be derived from modification of parent activities.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumann G., Chrambach A. A highly crosslinked, transparent polyacrylamide gel with improved mechanical stability for use in isoelectric focusing and isotachophoresis. Anal Biochem. 1976 Jan;70(1):32–38. doi: 10.1016/s0003-2697(76)80044-9. [DOI] [PubMed] [Google Scholar]
- Beintema J. J., Gaastra W., Scheffer A. J., Welling G. W. Carbohydrate in pancreatic ribonucleases. Eur J Biochem. 1976 Apr 1;63(2):441–448. doi: 10.1111/j.1432-1033.1976.tb10246.x. [DOI] [PubMed] [Google Scholar]
- Blank A., Dekker C. A. Ribonucleases of human serum, urine, cerebrospinal fluid, and leukocytes. Activity staining following electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Biochemistry. 1981 Apr 14;20(8):2261–2267. doi: 10.1021/bi00511a030. [DOI] [PubMed] [Google Scholar]
- Blank A., Sugiyama R. H., Dekker C. A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem. 1982 Mar 1;120(2):267–275. doi: 10.1016/0003-2697(82)90347-5. [DOI] [PubMed] [Google Scholar]
- Cassidy J. T., Jourdian G. W., Roseman S. The sialic acids. VI. Purification and properties of sialidase from Clostridium perfringens. J Biol Chem. 1965 Sep;240(9):3501–3506. [PubMed] [Google Scholar]
- Catley B. J., Moore S., Stein W. H. The carbohydrate moiety of bovine pancreatic deoxyribonuclease. J Biol Chem. 1969 Feb 10;244(3):933–936. [PubMed] [Google Scholar]
- Chrambach A. Electrophoresis and electrofocusing on polyacrylamide gel in the study of native macromolecules. Mol Cell Biochem. 1980 Jan 16;29(1):23–46. doi: 10.1007/BF00230953. [DOI] [PubMed] [Google Scholar]
- Churchill J. R., Urbanczyk J., Studzinski G. P. Multiple deoxyribonuclease activities in nuclei of HeLa cells. Biochem Biophys Res Commun. 1973 Aug 6;53(3):1009–1016. doi: 10.1016/0006-291x(73)90192-7. [DOI] [PubMed] [Google Scholar]
- Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
- Hunt L. A., Wright S. E. Rous sarcoma virus glycoproteins contain hybrid-type oligosaccharides. J Virol. 1981 Aug;39(2):646–650. doi: 10.1128/jvi.39.2.646-650.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson R. L., Hirs C. H. The primary structure of porcine pancreatic ribonuclease. I. The distribution and sites of carbohydrate attachment. J Biol Chem. 1970 Feb 10;245(3):624–636. [PubMed] [Google Scholar]
- Jackson R. L., Hirs C. H. The primary structure of porcine pancreatic ribonuclease. II. The amino acid sequence of the reduced S-aminoethylated protein. J Biol Chem. 1970 Feb 10;245(3):637–653. [PubMed] [Google Scholar]
- Karpetsky T. P., Davies G. E., Shriver K. K., Levy C. C. Use of polynucleotide/polyacrylamide-gel electrophoresis as a sensitive technique for the detection and comparison of ribonuclease activities. Biochem J. 1980 Aug 1;189(2):277–284. doi: 10.1042/bj1890277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpetsky T. P., Humphrey R. L., Levy C. C. Influence of renal insufficiency on levels of serum ribonuclease in patients with multiple myeloma. J Natl Cancer Inst. 1977 Apr;58(4):875–880. doi: 10.1093/jnci/58.4.875. [DOI] [PubMed] [Google Scholar]
- Kobata A. Use of endo- and exoglycosidases for structural studies of glycoconjugates. Anal Biochem. 1979 Nov 15;100(1):1–14. doi: 10.1016/0003-2697(79)90102-7. [DOI] [PubMed] [Google Scholar]
- Lacks S. A., Springhorn S. S., Rosenthal A. L. Effect of the composition of sodium dodecyl sulfate preparations on the renaturation of enzymes after polyacrylamide gel electrophoresis. Anal Biochem. 1979 Dec;100(2):357–363. doi: 10.1016/0003-2697(79)90241-0. [DOI] [PubMed] [Google Scholar]
- Liao T. H. Multiple forms of deoxyribonuclease I. Mol Cell Biochem. 1981 Jan 20;34(1):15–22. doi: 10.1007/BF02354847. [DOI] [PubMed] [Google Scholar]
- Linsley W. S., Penhoet E. E., Linn S. Human endonuclease specific for apurinic/apyrimidinic sites in DNA. Partial purification and characterization of multiple forms from placenta. J Biol Chem. 1977 Feb 25;252(4):1235–1242. [PubMed] [Google Scholar]
- Naskalski J. The properties of ribonucleases isolated from urine of patients with chronic granulocytic leukemia. I. Urinary alkaline ribonuclease. Pol Med J. 1972;11(6):1407–1422. [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- PLUMMER T. H., Jr, HIRS C. H. The isolation of ribounclease B, a glycoprotein, from bovine pancreatic juice. J Biol Chem. 1963 Apr;238:1396–1401. [PubMed] [Google Scholar]
- Rabin E. Z., Weinberger V. The isolation, purification, and properties of a ribonuclease from normal human urine. Biochem Med. 1975 Sep;14(1):1–11. doi: 10.1016/0006-2944(75)90014-9. [DOI] [PubMed] [Google Scholar]
- Reimer G., Zöllner E. J., Reitz M., Schwulera U., Leonhardi G. Comparison of DNase, DNA-polymerase and RNA-polymerase activities present in the DNA-binding proteins of normal human dermis, epidermis, horny layer and psoriatic scales. Arch Dermatol Res. 1978 Dec 1;263(3):317–324. doi: 10.1007/BF00446948. [DOI] [PubMed] [Google Scholar]
- Rosenthal A. L., Lacks S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 May 15;80(1):76–90. doi: 10.1016/0003-2697(77)90627-3. [DOI] [PubMed] [Google Scholar]
- Salnikow J., Moore S., Stein W. H. Comparison of the multiple forms of bovine pancreatic deoxyribonuclease. J Biol Chem. 1970 Nov 10;245(21):5685–5690. [PubMed] [Google Scholar]
- Slor H., Lev-Sobe T., Zöllner J. Neutral deoxyribonucleases of HeLa S3 cells: electrophoretic separation, characterization, substrate specificity and mode of action. Eur J Biochem. 1980;108(1):67–72. doi: 10.1111/j.1432-1033.1980.tb04696.x. [DOI] [PubMed] [Google Scholar]
- Tai T., Yamashita K., Ito S., Kobata A. Structures of the carbohydrate moiety of ovalbumin glycopeptide III and the difference in specificity of endo-beta-N-acetylglucosaminidases CII and H. J Biol Chem. 1977 Oct 10;252(19):6687–6694. [PubMed] [Google Scholar]
- Tai T., Yamashita K., Kobata A. The substrate specificities of endo-beta-N-acetylglucosaminidases CII and H. Biochem Biophys Res Commun. 1977 Sep 9;78(1):434–441. doi: 10.1016/0006-291x(77)91273-6. [DOI] [PubMed] [Google Scholar]
- Tarentino A. L., Trimble R. B., Maley F. endo-beta-N-Acetylglucosaminidase from Streptomyces plicatus. Methods Enzymol. 1978;50:574–580. doi: 10.1016/0076-6879(78)50065-7. [DOI] [PubMed] [Google Scholar]
- Tournut R., Allan B. J., White T. T. Cancer, pancreatitis, and the detection of the isoenzymes of DNAase, RNAase and amylase. Clin Chim Acta. 1978 Sep 1;88(2):345–353. doi: 10.1016/0009-8981(78)90441-2. [DOI] [PubMed] [Google Scholar]
- Urbanczyk J., Studzinski G. P. Chromatin-associated DNA endonuclease activities in HeLa cells. Biochem Biophys Res Commun. 1974 Jul 24;59(2):616–622. doi: 10.1016/s0006-291x(74)80024-0. [DOI] [PubMed] [Google Scholar]
- Wadano A., Hobus P. A., Liao T. H. Isolation and characterization of multiple forms of ovine pancreatic deoxyribonuclease. Chromatograhpic behavior of the enzyme on concanavalin A-agarose and carboxymethylcellulose columns. Biochemistry. 1979 Sep 18;18(19):4124–4130. doi: 10.1021/bi00586a011. [DOI] [PubMed] [Google Scholar]
- Wilson C. M. A rapid staining technique for detection of RNase after polyacrylamide gel electrophoresis. Anal Biochem. 1969 Oct 1;31(1):506–511. doi: 10.1016/0003-2697(69)90294-2. [DOI] [PubMed] [Google Scholar]
- Wilson C. M. Plant Nucleases: III. Polyacrylamide Gel Electrophoresis of Corn Ribonuclease Isoenzymes. Plant Physiol. 1971 Jul;48(1):64–68. doi: 10.1104/pp.48.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamanaka M., Akagi K., Murai K., Hirao N., Fujimi S., Omae T. Purification and properties of urinary alkaline ribonucleases from patients with nephrotic syndrome. Clin Chim Acta. 1977 Jul 15;78(2):191–201. doi: 10.1016/0009-8981(77)90306-0. [DOI] [PubMed] [Google Scholar]
- Yamanaka M., Tsubota Y., Anai M., Ishimatsu K., Okumura M., Katsuki S., Takagi Y. Purification and properties of acid deoxyribonucleases of human gastric mucosa and cervix uteri. J Biol Chem. 1974 Jun 25;249(12):3884–3889. [PubMed] [Google Scholar]
- Yamashita K., Tachibana Y., Kobata A. The structures of the galactose-containing sugar chains of ovalbumin. J Biol Chem. 1978 Jun 10;253(11):3862–3869. [PubMed] [Google Scholar]
- Zöllner E. J., Beck J. D., Lemmel E. M., Zahn R. K. Deoxyribonucleases activities in human leukemic cells and mouse lymphoblasts. Cancer Lett. 1975 Nov;1(2):119–126. doi: 10.1016/s0304-3835(75)95898-x. [DOI] [PubMed] [Google Scholar]
- Zöllner E. J., Heicke B., Zahn R. K. Human serum deoxyribonuclease assay in (3H)DNA-polyacrylamide gels without staining artifacts. Anal Biochem. 1974 Mar;58(1):71–76. doi: 10.1016/0003-2697(74)90442-4. [DOI] [PubMed] [Google Scholar]
- Zöllner E. J., Klepsch D. M., Zahn R. K. Different deoxyribonucleases in human submandibular saliva. J Dent Res. 1974 Nov-Dec;53(6):1499–1499. doi: 10.1177/00220345740530063701. [DOI] [PubMed] [Google Scholar]
- Zöllner E. J., Klepsch D. M., Zahn R. K., Knepper R. Deoxyribonuclease in human parotid saliva. Enzyme. 1975;19(1):60–64. doi: 10.1159/000458972. [DOI] [PubMed] [Google Scholar]
- Zöllner E. J., Störger H., Breter H. J., Zahn R. K. Characterization of different deoxyribonucleases in human lymphocytes. Z Naturforsch C. 1975 Nov-Dec;30(6):781–784. doi: 10.1515/znc-1975-11-1215. [DOI] [PubMed] [Google Scholar]
- Zöllner E. J., Zahn R. K., Jungwirth C. In situ assay of poxvirus-induced and virion-contained deoxyribonucleases in DNA polyacrylamide gels. Intervirology. 1978;9(1):1–7. doi: 10.1159/000148915. [DOI] [PubMed] [Google Scholar]
- van Loon L. C. Polynucleotide-acrylamide gel electrophoresis of soluble nucleases from tobacco leaves. FEBS Lett. 1975 Mar 1;51(1):266–269. doi: 10.1016/0014-5793(75)80903-3. [DOI] [PubMed] [Google Scholar]