Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Apr 15;219(2):593–600. doi: 10.1042/bj2190593

Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata.

J C Willison, D Madern, P M Vignais
PMCID: PMC1153517  PMID: 6146310

Abstract

Non-autotrophic ( Aut -) mutants of Rhodopseudomonas capsulata B10 were tested for their efficiency of nitrogenase-mediated H2 production. Three of these mutants ( IR3 , IR4 and IR5 ) showed an increase stoichiometry of H2 production, mediated by nitrogenase, from certain organic substrates. For example, in a medium containing 7 mM-L-glutamate as nitrogen source, strain IR4 produced 10-20% more H2 than did the wild type with DL-lactate or L-malate as major carbon source, 20-50% more H2 with DL-malate, and up to 70% more with D-malate. Strain IR4 was deficient in 'uptake' hydrogenase activity as measured by H2-dependent reduction of Methylene Blue or Benzyl Viologen. However, this observation did not explain the increased efficiency of H2 production, since H2 uptake (H2 recycling) was undetectable in cells of the wild type. Instead, increased H2 production by the mutant appeared to be due to an improved conversion of organic substrates to H2 and CO2, presumably due to an altered carbon metabolism. The metabolism of D-malate by different strains was studied. An NAD+-dependent D-malic enzyme was synthesized constitutively by the wild type, and showed a Km for D-malate of 3 mM. The activity of this enzyme was approx. 50% higher in strain IR4 than in the wild type, and the mutant also grew twice as fast as the wild type with D-malate as sole carbon source.

Full text

PDF
593

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colbeau A., Kelley B. C., Vignais P. M. Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J Bacteriol. 1980 Oct;144(1):141–148. doi: 10.1128/jb.144.1.141-148.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dixon R. O. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Mikrobiol. 1972;85(3):193–201. doi: 10.1007/BF00408844. [DOI] [PubMed] [Google Scholar]
  3. Hallenbeck P. C., Meyer C. M., Vignais P. M. Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: purification and molecular properties. J Bacteriol. 1982 Feb;149(2):708–717. doi: 10.1128/jb.149.2.708-717.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol. 1977 Feb;129(2):724–731. doi: 10.1128/jb.129.2.724-731.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol. 1977 Feb;129(2):732–739. doi: 10.1128/jb.129.2.732-739.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jouanneau Y., Kelley B. C., Berlier Y., Lespinat P. A., Vignais P. M. Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata. J Bacteriol. 1980 Aug;143(2):628–636. doi: 10.1128/jb.143.2.628-636.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kelley B. C., Meyer C. M., Gandy C., Vignais P. M. Hydrogen recycling by Rhodopseudomonas capsulata. FEBS Lett. 1977 Sep 15;81(2):281–285. doi: 10.1016/0014-5793(77)80535-8. [DOI] [PubMed] [Google Scholar]
  8. Klemme J. H. Untersuchungen zur Photoautotrophie mit molekularem Wasserstoff bei neuisolierten schwefelfreien Purpurbakterien. Arch Mikrobiol. 1968;64(1):29–42. [PubMed] [Google Scholar]
  9. LAW J. H., SLEPECKY R. A. Assay of poly-beta-hydroxybutyric acid. J Bacteriol. 1961 Jul;82:33–36. doi: 10.1128/jb.82.1.33-36.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Macler B. A., Pelroy R. A., Bassham J. A. Hydrogen formation in nearly stoichiometric amounts from glucose by a Rhodopseudomonas sphaeroides mutant. J Bacteriol. 1979 May;138(2):446–452. doi: 10.1128/jb.138.2.446-452.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Madigan M. T., Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol. 1979 Jan;137(1):524–530. doi: 10.1128/jb.137.1.524-530.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maier R. J. Rhizobium japonicum mutant strains unable to grow chemoautotrophically with H2. J Bacteriol. 1981 Jan;145(1):533–540. doi: 10.1128/jb.145.1.533-540.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyer J., Kelley B. C., Vignais P. M. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulata. J Bacteriol. 1978 Oct;136(1):201–208. doi: 10.1128/jb.136.1.201-208.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meyer J., Kelley B. C., Vignais P. M. Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria. Biochimie. 1978;60(3):245–260. doi: 10.1016/s0300-9084(78)80821-9. [DOI] [PubMed] [Google Scholar]
  15. Odom J. M., Wall J. D. Photoproduction of h(2) from cellulose by an anaerobic bacterial coculture. Appl Environ Microbiol. 1983 Apr;45(4):1300–1305. doi: 10.1128/aem.45.4.1300-1305.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paul F., Colbeau A., Vignais P. M. Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata. FEBS Lett. 1979 Oct 1;106(1):29–33. doi: 10.1016/0014-5793(79)80688-2. [DOI] [PubMed] [Google Scholar]
  17. Robson R. L., Postgate J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol. 1980;34:183–207. doi: 10.1146/annurev.mi.34.100180.001151. [DOI] [PubMed] [Google Scholar]
  18. STOPPANI A. O., FULLER R. C., CALVIN M. Carbon dioxide fixation by Rhodopseudomonas capsulatus. J Bacteriol. 1955 May;69(5):491–501. doi: 10.1128/jb.69.5.491-501.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weaver P. F., Wall J. D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol. 1975 Nov 7;105(3):207–216. doi: 10.1007/BF00447139. [DOI] [PubMed] [Google Scholar]
  20. van Gemerden H. Utilization of reducing power in growing cultures of Chromatium. Arch Mikrobiol. 1968;64(2):111–117. doi: 10.1007/BF00406969. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES