Abstract
A method for the immunoaffinity purification of cholinergic nerve terminals from mammalian brain was developed. A sheep antiserum to Torpedo electric-organ synaptic membranes, previously shown to be specific for cholinergic terminals in mammalian brain, was incubated with crude mitochondrial fractions prepared from rat brain. Cholinergic nerve terminals sensitized by this serum were purified from the mitochondrial fractions on a high-capacity cellulose immunoadsorbent bearing a mouse monoclonal anti-(sheep immunoglobulin G) antibody. Adsorption of nerve terminals on to the immunoadsorbent was assessed by using a variety of enzyme markers and gave a maximum yield of 24% of choline acetyltransferase, whereas non-specific binding was less than 1.0% for all of the enzymes measured. Cholinergic terminals were purified 26-fold from rat caudate nucleus, 30-fold from rat hippocampus and 38-fold from rat cerebral cortex. The terminals were shown to be intact, osmotically sensitive and metabolically active.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck P., Nicholas H. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies. Biochem J. 1975 Mar;145(3):607–616. doi: 10.1042/bj1450607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
- Clementi F., Whittaker V. P., Sheridan M. N. The yield of synaptosomes from the cerebral cortex of guinea pigs estimated by a polystyrene bead "tagging" procedure. Z Zellforsch Mikrosk Anat. 1966;72(1):126–138. doi: 10.1007/BF00336902. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
- Fonnum F., Storm-Mathisen J., Walberg F. Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res. 1970 Jun 3;20(2):259–275. doi: 10.1016/0006-8993(70)90293-3. [DOI] [PubMed] [Google Scholar]
- Galfrè G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 1981;73(Pt B):3–46. doi: 10.1016/0076-6879(81)73054-4. [DOI] [PubMed] [Google Scholar]
- Hales C. N., Woodhead J. S. Labeled antibodies and their use in the immunoradiometric assay. Methods Enzymol. 1980;70(A):334–355. doi: 10.1016/s0076-6879(80)70063-0. [DOI] [PubMed] [Google Scholar]
- Israël M., Manaranche R., Mastour-Frachon P., Morel N. Isolation of pure cholinergic nerve endings from the electric organ of Torpedo marmorata. Biochem J. 1976 Oct 15;160(1):113–115. doi: 10.1042/bj1600113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito A., Palade G. E. Presence of NADPH-cytochrome P-450 reductase in rat liver Golgi membranes. Evidence obtained by immunoadsorption method. J Cell Biol. 1978 Nov;79(2 Pt 1):590–597. doi: 10.1083/jcb.79.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones R. T., Walker J. H., Richardson P. J., Fox G. Q., Whittaker V. P. Immunohistochemical localization of cholinergic nerve terminals. Cell Tissue Res. 1981;218(2):355–373. doi: 10.1007/BF00210350. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Luzio J. P., Newby A. C., Hales C. N. A rapid immunological procedure for the isolation of hormonally sensitive rat fat-cell plasma membrane. Biochem J. 1976 Jan 15;154(1):11–21. doi: 10.1042/bj1540011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luzio J. P., Stanley K. K. The isolation of endosome-derived vesicles from rat hepatocytes. Biochem J. 1983 Oct 15;216(1):27–36. doi: 10.1042/bj2160027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthew W. D., Tsavaler L., Reichardt L. F. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol. 1981 Oct;91(1):257–269. doi: 10.1083/jcb.91.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson P. J. Presynaptic distribution of the cholinergic-specific antigen Chol-1 and 5'-nucleotidase in rat brain, as determined by complement-mediated release of neurotransmitters. J Neurochem. 1983 Sep;41(3):640–648. doi: 10.1111/j.1471-4159.1983.tb04789.x. [DOI] [PubMed] [Google Scholar]
- Richardson P. J. Quantitation of cholinergic synaptosomes from guinea pig brain. J Neurochem. 1981 Jul;37(1):258–260. doi: 10.1111/j.1471-4159.1981.tb05319.x. [DOI] [PubMed] [Google Scholar]
- Richardson P. J., Walker J. H., Jones R. T., Whittaker V. P. Identification of a cholinergic-specific antigen Chol-1 as a ganglioside. J Neurochem. 1982 Jun;38(6):1605–1614. doi: 10.1111/j.1471-4159.1982.tb06640.x. [DOI] [PubMed] [Google Scholar]
- Schachner M. Cell type-specific surface antigens in the mammalian nervous system. J Neurochem. 1982 Jul;39(1):1–8. doi: 10.1111/j.1471-4159.1982.tb04694.x. [DOI] [PubMed] [Google Scholar]
- Sims K. L., Davis G. A., Bloom F. E. Activities of 3,4-dihydroxy-L-phenylalanine and 5-hydroxy-L-tryptophan decarboxylases in rat brain: assay characteristics and distribution. J Neurochem. 1973 Feb;20(2):449–464. doi: 10.1111/j.1471-4159.1973.tb12144.x. [DOI] [PubMed] [Google Scholar]
- Sogin D. C. 2',3'-Cyclic NADP as a substrate for 2',3'-cyclic nucleotide 3'-phosphohydrolase. J Neurochem. 1976 Dec;27(6):1333–1337. doi: 10.1111/j.1471-4159.1976.tb02612.x. [DOI] [PubMed] [Google Scholar]
- Stanley K. K., Edwards M. R., Luzio J. P. Subcellular distribution and movement of 5'-nucleotidase in rat cells. Biochem J. 1980 Jan 15;186(1):59–69. doi: 10.1042/bj1860059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
- Westwood S. A., Luzio J. P., Flockhart D. A., Siddle K. Investigation of the subcellular distribution of cyclic-AMP phosphodiesterase in rat hepatocytes, using a rapid immunological procedure for the isolation of plasma membrane. Biochim Biophys Acta. 1979 Apr 3;583(4):454–466. doi: 10.1016/0304-4165(79)90062-x. [DOI] [PubMed] [Google Scholar]
- de Kretser T. A., Bodmer J. G., Bodmer W. F. The separation of cell populations using monoclonal antibodies attached to sepharose. Tissue Antigens. 1980 Oct;16(4):317–325. doi: 10.1111/j.1399-0039.1980.tb00313.x. [DOI] [PubMed] [Google Scholar]

