Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 May 1;219(3):743–749. doi: 10.1042/bj2190743

Differential membrane protein carboxyl-methylation of intact human erythrocytes by exogenous methyl donors.

J Y Ro, P DiMaria, S Kim
PMCID: PMC1153540  PMID: 6743244

Abstract

The patterns of membrane protein carboxyl-methylation by protein methylase II (S-adenosylmethionine: protein-carboxyl O-methyltransferase, EC 2.1.1.24) in intact human erythrocytes were shown to differ markedly whether the methyl donor, S-adenosyl-L-[methyl-3H]methionine, was supplied exogenously or formed intracellularly via exogenously added L-[methyl-3H]methionine. The differences include the following. (1) The methylation of cytoskeletal components (band 2.1 and 4.1) occurs only in the case of the L-[methyl-3H]methionine-labelled cells. (2) The methionine-mediated methylation was much less sensitive to S-adenosyl-L-homocysteine inhibition than the adenosylmethionine-mediated methylation (22% versus 95% inhibition at 10 microM). (3) The membrane protein methylation mediated by exogenous adenosylmethionine and methionine differed markedly in their alkali labilities; at pH 6.0, 30% of the adenosylmethionine-mediated protein methyl esters were hydrolysed after 30 min (37 degrees C) while the methionine-mediated esters were stable. At pH 7.4, the respective labilities were 60% and 30% for the 30 min incubation. To explain these results, a possible involvement of cytoskeletal structure associated with the intact erythrocyte is discussed.

Full text

PDF
743

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldessarini R. J., Stramentinoli G., Lipinski J. F. Methylation hypothesis. Arch Gen Psychiatry. 1979 Mar;36(3):303–307. doi: 10.1001/archpsyc.1979.01780030069006. [DOI] [PubMed] [Google Scholar]
  2. Fairbanks G., Avruch J. Four gel systems for electrophoretic fractionation of membrane proteins using ionic detergents. J Supramol Struct. 1972;1(1):66–75. doi: 10.1002/jss.400010110. [DOI] [PubMed] [Google Scholar]
  3. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  4. Farooqui J. Z., Lee H. W., Kim S., Paik W. K. Studies on compartmentation of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hepatocytes. Biochim Biophys Acta. 1983 Jun 9;757(3):342–351. [PubMed] [Google Scholar]
  5. Freitag C., Clarke S. Reversible methylation of cytoskeletal and membrane proteins in intact human erythrocytes. J Biol Chem. 1981 Jun 25;256(12):6102–6108. [PubMed] [Google Scholar]
  6. Gagnon C., Viveros O. H., Diliberto E. J., Jr, Axelrod J. Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins. J Biol Chem. 1978 Jun 10;253(11):3778–3781. [PubMed] [Google Scholar]
  7. Galletti P., Ki Paik W., Kim S. Methyl acceptors for protein methylase II from human-erythrocyte membrane. Eur J Biochem. 1979 Jun;97(1):221–227. doi: 10.1111/j.1432-1033.1979.tb13106.x. [DOI] [PubMed] [Google Scholar]
  8. Janson C. A., Clarke S. Identification of aspartic acid as a site of methylation in human erythrocyte membrane proteins. J Biol Chem. 1980 Dec 25;255(24):11640–11643. [PubMed] [Google Scholar]
  9. Kim S., Paik W. K. Labile protein-methyl ester: comparison between chemically and enzymatically synthesized. Experientia. 1976 Aug 15;32(8):982–984. doi: 10.1007/BF01933924. [DOI] [PubMed] [Google Scholar]
  10. Kim S., Paik W. K. Studies on the origin of epsilon-N-methyl-L-lysine in protein. J Biol Chem. 1965 Dec;240(12):4629–4634. [PubMed] [Google Scholar]
  11. Kim S. S-adenosylmethionine: protein-carboxyl methyltransferase from erythrocyte. Arch Biochem Biophys. 1974 Apr 2;161(2):652–657. doi: 10.1016/0003-9861(74)90350-6. [DOI] [PubMed] [Google Scholar]
  12. Kim S., Wasserman L., Lew B., Paik W. K. Studies on the natural substrate for protein methylase II in mammalian brain and blood. J Neurochem. 1975 Apr;24(4):625–629. [PubMed] [Google Scholar]
  13. Kleene S. J., Toews M. L., Adler J. Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. J Biol Chem. 1977 May 25;252(10):3214–3218. [PubMed] [Google Scholar]
  14. Lombardini J. B., Talalay P. Effect of inhibitors of adenosine triphosphate: L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine and L-methionine in normal and malignant mammalian tissues. Mol Pharmacol. 1973 Jul;9(4):542–560. [PubMed] [Google Scholar]
  15. Lux S. E. Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Semin Hematol. 1979 Jan;16(1):21–51. [PubMed] [Google Scholar]
  16. McFadden P. N., Clarke S. Methylation at D-aspartyl residues in erythrocytes: possible step in the repair of aged membrane proteins. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2460–2464. doi: 10.1073/pnas.79.8.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Salvatore F., Utili R., Zappia V., Shapiro S. K. Quantitative analysis of S-adenosylmethionine and S-adenosylhomocysteine in animal tissues. Anal Biochem. 1971 May;41(1):16–28. doi: 10.1016/0003-2697(71)90187-4. [DOI] [PubMed] [Google Scholar]
  18. Springer W. R., Koshland D. E., Jr Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc Natl Acad Sci U S A. 1977 Feb;74(2):533–537. doi: 10.1073/pnas.74.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stramentinoli G., Pezzoli C., Kienle M. G. Uptake of S-adenosyl-L-methionine by rabbit erythrocytes. Biochem Pharmacol. 1978 May 15;27(10):1427–1430. doi: 10.1016/0006-2952(78)90096-5. [DOI] [PubMed] [Google Scholar]
  21. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  22. Terwilliger T. C., Clarke S. Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells. J Biol Chem. 1981 Mar 25;256(6):3067–3076. [PubMed] [Google Scholar]
  23. Zappia V., Galletti P., Porcelli M., Ruggiero G., Andreana A. Uptake of adenosylmethionine and related sulfur compounds by isolated rat liver. FEBS Lett. 1978 Jun 15;90(2):331–335. doi: 10.1016/0014-5793(78)80398-6. [DOI] [PubMed] [Google Scholar]
  24. Zappia V., Zydek-Cwick R., Schlenk F. The specificity of S-adenosylmethionine derivatives in methyl transfer reactions. J Biol Chem. 1969 Aug 25;244(16):4499–4509. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES