Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 May 1;219(3):801–809. doi: 10.1042/bj2190801

Cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase activities of rat mammary tissue.

I Mullaney, R A Clegg
PMCID: PMC1153547  PMID: 6331397

Abstract

Cyclic nucleotide phosphodiesterase activity in mammary tissue from rats in midlactation was resolved by DEAE-cellulose chromatography into three functionally distinct fractions: a Ca2+/calmodulin-stimulated cyclic GMP phosphodiesterase, a cyclic GMP-stimulated low-affinity cyclic nucleotide phosphodiesterase, and a high-affinity cyclic AMP-specific phosphodiesterase. The absolute activities and relative proportions of high- and low-affinity enzymes resemble those found, for example, in liver, as distinct from those in excitable tissues. Three functional characteristics are described which are peculiar to mammary-tissue phosphodiesterases. Firstly, the concentration of free Ca2+ required to achieve half-maximal activation of the Ca2+/calmodulin-stimulated phosphodiesterase is somewhat higher than for the analogous enzyme in other tissues; secondly, the activity of this enzyme towards cyclic AMP relative to that towards cyclic GMP is unusually low, and thirdly, the low-affinity cyclic nucleotide phosphodiesterase is inhibited by low concentrations of free Ca2+.

Full text

PDF
801

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Williamson D. H. Rapid inhibition of lipogenesis in vivo in lactating rat mammary gland by medium- or long-chain triacylglycerols and partial reversal by insulin. Biochem J. 1980 Oct 15;192(1):361–364. doi: 10.1042/bj1920361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arch J. R., Newsholme E. A. Activities and some properties of adenylate cyclase and phosphodiesterase in muscle, liver and nervous tissues from vertebrates and invertebrates in relation to the control of the concentration of adenosine 3':5'-cyclic monophosphate. Biochem J. 1976 Sep 15;158(3):603–622. doi: 10.1042/bj1580603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beale E. G., Dedman J. R., Means A. R. Isolation and characterization of a protein from rat testis which inhibits cyclic AMP-dependent protein kinase and phosdiesterase. J Biol Chem. 1977 Sep 25;252(18):6322–6327. [PubMed] [Google Scholar]
  4. Beavo J. A., Hansen R. S., Harrison S. A., Hurwitz R. L., Martins T. J., Mumby M. C. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):387–410. doi: 10.1016/0303-7207(82)90135-6. [DOI] [PubMed] [Google Scholar]
  5. Brownsey R. W., Hardie D. G. Regulation of acetyl-CoA carboxylase: identity fo sites phosphorylated in intact cells treated with adrenaline and in vitro by cyclic AMP-dependent protein kinase. FEBS Lett. 1980 Oct 20;120(1):67–70. doi: 10.1016/0014-5793(80)81048-9. [DOI] [PubMed] [Google Scholar]
  6. Brownsey R. W., Hughes W. A., Denton R. M. Adrenaline and the regulation of acetyl-coenzyme A carboxylase in rat epididymal adipose tissue. Inactivation of the enzyme is associated with phosphorylation and can be reversed on dephosphorylation. Biochem J. 1979 Oct 15;184(1):23–32. doi: 10.1042/bj1840023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coquil J. F. Properties of the cyclic GMP phosphodiesterase from rat lung. Inhibition by unsaturated fatty acids. Biochim Biophys Acta. 1983 Mar 30;743(3):359–369. doi: 10.1016/0167-4838(83)90394-1. [DOI] [PubMed] [Google Scholar]
  8. Cox J. A., Malnoë A., Stein E. A. Regulation of brain cyclic nucleotide phosphodiesterase by calmodulin. A quantitative analysis. J Biol Chem. 1981 Apr 10;256(7):3218–3222. [PubMed] [Google Scholar]
  9. Donnelly T. E., Jr Reconsideration of the multiple cyclic nucleotide phosphodiesterases in bovine heart. Biochem Biophys Res Commun. 1978 Jun 14;82(3):964–970. doi: 10.1016/0006-291x(78)90877-x. [DOI] [PubMed] [Google Scholar]
  10. Dousa T., Rychlík I. Adenyl cyclase and adenosine 3',5'-cyclic phosphate phosphodiesterase in the receptor tissues of neurohypophysial hormones. Life Sci. 1968 Oct 15;7(20):1039–1044. doi: 10.1016/0024-3205(68)90140-9. [DOI] [PubMed] [Google Scholar]
  11. Fell D. A. Theoretical analyses of the functioning of the high- and low-Km cyclic nucleotide phosphodiesterases in the regulation of the concentration of adenosine 3',5'-cyclic monophosphate in animal cells. J Theor Biol. 1980 May 21;84(2):361–385. doi: 10.1016/s0022-5193(80)80011-7. [DOI] [PubMed] [Google Scholar]
  12. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  13. Hardie D. G., Guy P. S. Reversible phosphorylation and inactivation of acetyl-CoA carboxylase from lactating rat mammary gland by cyclic AMP-dependent protein kinase. Eur J Biochem. 1980 Sep;110(1):167–177. doi: 10.1111/j.1432-1033.1980.tb04852.x. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lin Y. M., Liu Y. P., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J Biol Chem. 1974 Aug 10;249(15):4943–4954. [PubMed] [Google Scholar]
  16. Louis S. L., Baldwin R. L. Changes in the cyclic 3', 5'-adenosine monophosphate system of rat mammary gland during lactation cycle. J Dairy Sci. 1975 Jun;58(6):861–869. doi: 10.3168/jds.S0022-0302(75)84650-9. [DOI] [PubMed] [Google Scholar]
  17. Majumder G. C., Turkington R. W. Hormonal regulation of protein kinases and adenosine 3',5'-monophosphate-binding protein in developing mammary gland. J Biol Chem. 1971 Sep 25;246(18):5545–5554. [PubMed] [Google Scholar]
  18. Manganiello V. C., Murad F., Vaughan M. Effects of lipolytic and antilipolytic agents on cyclic 3',5'-adenosine monophosphate in fat cells. J Biol Chem. 1971 Apr 10;246(7):2195–2202. [PubMed] [Google Scholar]
  19. Martins T. J., Mumby M. C., Beavo J. A. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem. 1982 Feb 25;257(4):1973–1979. [PubMed] [Google Scholar]
  20. Mayer R. J. Hormonal factors in lipogenesis in mammary gland. Vitam Horm. 1978;36:101–163. doi: 10.1016/s0083-6729(08)60983-8. [DOI] [PubMed] [Google Scholar]
  21. McNeillie E. M., Clegg R. A., Zammit V. A. Regulation of acetyl-CoA carboxylase in rat mammary gland. Effects of incubation with Ca2+, Mg2+ and ATP on enzyme activity in tissue extracts. Biochem J. 1981 Dec 15;200(3):639–644. doi: 10.1042/bj2000639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McNeillie E. M., Zammit V. A. Regulation of acetyl-CoA carboxylase in rat mammary gland. Effects of starvation and of insulin and prolactin deficiency on the fraction of the enzyme in the active form in vivo. Biochem J. 1982 Apr 15;204(1):273–280. doi: 10.1042/bj2040273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Munday M. R., Williamson D. H. Effects of starvation, insulin or prolactin deficiency on the activity of acetyl-CoA carboxylase in mammary gland and liver of lactating rats. FEBS Lett. 1982 Feb 22;138(2):285–288. doi: 10.1016/0014-5793(82)80462-6. [DOI] [PubMed] [Google Scholar]
  24. Nimmo H. G., Cohen P. Hormonal control of protein phosphorylation. Adv Cyclic Nucleotide Res. 1977;8:145–266. [PubMed] [Google Scholar]
  25. Pilkis S. J., Claus T. H., Johnson R. A., Park C. R. Hormonal control of cyclic 3':5'-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats. J Biol Chem. 1975 Aug 25;250(16):6328–6336. [PubMed] [Google Scholar]
  26. Pizarro M., Puente J., Sapag-Hagar M. Calmodulin and cyclic nucleotide-phosphodiesterase activities in rat mammary gland during the lactogenic cycle. FEBS Lett. 1981 Dec 21;136(1):127–130. doi: 10.1016/0014-5793(81)81229-x. [DOI] [PubMed] [Google Scholar]
  27. Plucinski T. M., Baldwin R. L. Effects of hormones on mammary adenosine 3',5'-monophosphate levels and metabolism in normal and adrenalectomized lactating rats. Endocrinology. 1982 Dec;111(6):2062–2065. doi: 10.1210/endo-111-6-2062. [DOI] [PubMed] [Google Scholar]
  28. Riss T. L., Baumrucker C. R. Calmodulin purification and quantitation from bovine mammary tissue. J Dairy Sci. 1982 Sep;65(9):1722–1728. doi: 10.3168/jds.S0022-0302(82)82407-7. [DOI] [PubMed] [Google Scholar]
  29. Robinson A. M., Girard J. R., Williamson D. H. Evidence for a role of insulin in the regulation of lipogenesis in lactating rat mammary gland. Measurements of lipogenesis in vivo and plasma hormone concentrations in response to starvation and refeeding. Biochem J. 1978 Oct 15;176(1):343–346. doi: 10.1042/bj1760343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robinson A. M., Williamson D. H. Control of glucose metabolism in isolated acini of the lactating mammary gland of the rat. The ability of glycerol to mimic some of the effects of insulin. Biochem J. 1977 Dec 15;168(3):465–474. doi: 10.1042/bj1680465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robson N. A., Clegg R. A., Zammit V. A. Regulation of peripheral lipogenesis by glucagon. Inability of the hormone to inhibit lipogenesis in rat mammary acini in vitro in the presence or absence of agents which alter its effects on adipocytes. Biochem J. 1984 Feb 1;217(3):743–749. doi: 10.1042/bj2170743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Russell T. R., Thompson W. J., Schneider F. W., Appleman M. M. 3':5'-cyclic adenosine monophosphate phosphodiesterase: negative cooperativity. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1791–1795. doi: 10.1073/pnas.69.7.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sapag-Hagar M., Greenbaum A. L. Adenosine 3':5'-monophosphate and hormone interrelationships in the mammary gland of the rat during pregnancy and lactation. Eur J Biochem. 1974 Sep 1;47(2):303–312. doi: 10.1111/j.1432-1033.1974.tb03694.x. [DOI] [PubMed] [Google Scholar]
  34. Sapag-Hagar M., Greenbaum A. L. The role of cyclic nucleotides in the development and function of rat mammary tissue. FEBS Lett. 1974 Sep 15;46(1):180–183. doi: 10.1016/0014-5793(74)80363-7. [DOI] [PubMed] [Google Scholar]
  35. Smoake J. A., Johnson L. S., Peake G. T. Calmodulin-dependent high-affinity cyclic AMP phosphodiesterase in liver membranes. Arch Biochem Biophys. 1981 Feb;206(2):331–335. doi: 10.1016/0003-9861(81)90098-9. [DOI] [PubMed] [Google Scholar]
  36. Terasaki W. L., Appleman M. M. The role of cyclic GMP in the regulation of cyclic AMP hydrolysis. Metabolism. 1975 Mar;24(3):311–319. doi: 10.1016/0026-0495(75)90112-2. [DOI] [PubMed] [Google Scholar]
  37. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  38. Thompson W. J., Brooker G., Appleman M. M. Assay of cyclic nucleotide phosphodiesterases with radioactive substrates. Methods Enzymol. 1974;38:205–212. doi: 10.1016/0076-6879(74)38033-0. [DOI] [PubMed] [Google Scholar]
  39. Thompson W. J., Epstein P. M., Strada S. J. Purification and characterization of high-affinity cyclic adenosine monophosphate phosphodiesterase from dog kidney. Biochemistry. 1979 Nov 13;18(23):5228–5237. doi: 10.1021/bi00590a030. [DOI] [PubMed] [Google Scholar]
  40. Thompson W. J., Terasaki W. L., Epstein P. M., Strada S. J. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucleotide Res. 1979;10:69–92. [PubMed] [Google Scholar]
  41. Wilde C. J., Kuhn N. J. Lactose synthesis and the utilisation of glucose by rat mammary acini. Int J Biochem. 1981;13(3):311–316. doi: 10.1016/0020-711x(81)90083-5. [DOI] [PubMed] [Google Scholar]
  42. Williams G. T., Johnstone A. P., Bouriotis V., Dean P. D. Affinity chromatography of membrane proteins on dihydroxyboryl-matrix gel. Biochem Soc Trans. 1981 Feb;9(1):137–139. doi: 10.1042/bst0090137. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES