Abstract
Magnetically induced birefringence is used to monitor the thermally induced self-assembly of collagen fibrils from a solution of molecules. The magnetic torque alone can, at best, only orient the fibrils into planes normal to the field direction. Nevertheless, the gels formed have a high degree of uniaxial alignment, probably due to the additional ordering effects of surface interactions. Thus magnetic orientation is potentially useful in the study of fibrillogenesis and in the production of highly oriented collagen gels.
Full text
PDF


Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold W., Steele R., Mueller H. ON THE MAGNETIC ASYMMETRY OF MUSCLE FIBERS. Proc Natl Acad Sci U S A. 1958 Jan;44(1):1–4. doi: 10.1073/pnas.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernengo J. C., Ronziere M. C., Bezot P., Bezot C., Herbage D., Veis A. A hydrodynamic study of collagen fibrillogenesis by electric birefringence and quasielastic light scattering. J Biol Chem. 1983 Jan 25;258(2):1001–1006. [PubMed] [Google Scholar]
- Comper W. D., Veis A. Characterization of nuclei in in vitro collagen fibril formation. Biopolymers. 1977 Oct;16(10):2133–2142. doi: 10.1002/bip.1977.360161005. [DOI] [PubMed] [Google Scholar]
- Comper W. D., Veis A. The mechanism of nucleation for in vitro collagen fibril formation. Biopolymers. 1977 Oct;16(10):2113–2131. doi: 10.1002/bip.1977.360161004. [DOI] [PubMed] [Google Scholar]
- Elsdale T., Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972 Sep;54(3):626–637. doi: 10.1083/jcb.54.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freyssinet J. M., Torbet J., Hudry-Clergeon G., Maret G. Fibrinogen and fibrin structure and fibrin formation measured by using magnetic orientation. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1616–1620. doi: 10.1073/pnas.80.6.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maret G., Weill G. Magnetic birefringence study of the electrostatic and intrinsic persistence length of DNA. Biopolymers. 1983 Dec;22(12):2727–2744. doi: 10.1002/bip.360221215. [DOI] [PubMed] [Google Scholar]
- Pauling L. Diamagnetic anisotropy of the peptide group. Proc Natl Acad Sci U S A. 1979 May;76(5):2293–2294. doi: 10.1073/pnas.76.5.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piez K. A. Structure and assembly of the native collagen fibril. Connect Tissue Res. 1982;10(1):25–36. doi: 10.3109/03008208209034403. [DOI] [PubMed] [Google Scholar]
- Riberiro P. C., Davidovich M. A., Wajnberg E., Bemski G., Kischinevsky M. Rotation of sickle cells in homogeneous magnetic fields. Biophys J. 1981 Nov;36(2):443–447. doi: 10.1016/S0006-3495(81)84743-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torbet J., Freyssinet J. M., Hudry-Clergeon G. Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature. 1981 Jan 1;289(5793):91–93. doi: 10.1038/289091a0. [DOI] [PubMed] [Google Scholar]
- Torbet J. Internal structural anisotropy of spherical viruses studied with magnetic birefringence. EMBO J. 1983;2(1):63–66. doi: 10.1002/j.1460-2075.1983.tb01381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torbet J., Maret G. High-field magnetic birefringence study of the structure of rodlike phages Pf1 and fd in solution. Biopolymers. 1981 Dec;20(12):2657–2669. doi: 10.1002/bip.1981.360201212. [DOI] [PubMed] [Google Scholar]
- Vassilev P. M., Dronzine R. T., Vassileva M. P., Georgiev G. A. Parallel arrays of microtubules formed in electric and magnetic fields. Biosci Rep. 1982 Dec;2(12):1025–1029. doi: 10.1007/BF01122171. [DOI] [PubMed] [Google Scholar]
- Worcester D. L. Structural origins of diamagnetic anisotropy in proteins. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5475–5477. doi: 10.1073/pnas.75.11.5475. [DOI] [PMC free article] [PubMed] [Google Scholar]

