Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jun 1;220(2):441–445. doi: 10.1042/bj2200441

Glycogenolytic effects of the calcium ionophore A23187, but not of vasopressin or angiotensin, in foetal-rat hepatocytes.

M Freemark, S Handwerger
PMCID: PMC1153645  PMID: 6430282

Abstract

Vasopressin, angiotensin and phenylephrine stimulate glycogenolysis in postnatal rat liver by a Ca2+-mediated mechanism not involving cyclic AMP. To determine whether these hormones promote glycogenolysis in foetal liver, we have examined their effects, and those of the Ca2+ ionophore A23187, on glycogen metabolism in cultured foetal-rat hepatocytes. Vasopressin and angiotensin (0.1 nM-0.1 microM) had no effects on either glycogen synthesis (as assessed by [14C]glucose incorporation into glycogen) or phosphorylase a activity. However, A23187 at 1 and 10 microM inhibited glycogen synthesis by 31.3 and 89.1% respectively (both P less than 0.001) and stimulated phosphorylase a activity by 66.9 and 184.1% respectively (both P less than 0.01). Incubation of cells in Ca2+-deficient medium attenuated the effects of 10 microM-A23187 on glycogen synthesis and abolished the effects of 1 microM-A23187. As in postnatal liver, glucagon (1 and 20 nM) and isoprenaline (1 and 10 microM), which activate adenylate cyclase, inhibited glycogen synthesis and stimulated phosphorylase a activity in foetal hepatocytes. The minimal effective concentration of phenylephrine was 10 times that of isoprenaline. These results indicate striking differences in the ontogeny of cyclic AMP-mediated and Ca2+-mediated processes which regulate hepatic glycogenolysis. Since increases in cytosolic Ca2+ induce glycogenolysis in foetal-rat liver, the weak or absent responses to vasopressin, angiotensin and the alpha-adrenergic agonists may result from defects in hormone-receptor binding or in post-receptor events leading to the mobilization of intracellular Ca2+ stores.

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggerbeck M., Guellaen G., Hanoune J. Adrenergic receptor of the alpha 1-subtype mediates the activation of the glycogen phosphorylase in normal rat liver. Biochem Pharmacol. 1980 Feb 15;29(4):643–645. doi: 10.1016/0006-2952(80)90389-5. [DOI] [PubMed] [Google Scholar]
  2. Blackmore P. F., Hughes B. P., Shuman E. A., Exton J. H. alpha-Adrenergic activation of phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium. J Biol Chem. 1982 Jan 10;257(1):190–197. [PubMed] [Google Scholar]
  3. Blair J. B., James M. E., Foster J. L. Adrenergic control of glucose output and adenosine 3':5'-monophosphate levels in hepatocytes from juvenile and adult rats. J Biol Chem. 1979 Aug 25;254(16):7579–7584. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Butlen D., Guillon G., Cantau B., Jard S. Comparison of the developmental patterns of vasopressin, glucagon and alpha-adrenergic receptors from rat-liver membranes. Mol Cell Endocrinol. 1980 Sep;19(3):275–289. doi: 10.1016/0303-7207(80)90057-x. [DOI] [PubMed] [Google Scholar]
  6. Bär H. P., Hahn P. Development of rat liver adenylcyclase. Can J Biochem. 1971 Jan;49(1):85–89. doi: 10.1139/o71-013. [DOI] [PubMed] [Google Scholar]
  7. Cantau B., Keppens S., De Wulf H., Jard S. (3H)-vasopressin binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glycogen phosphorylase activation. J Recept Res. 1980;1(2):137–168. doi: 10.3109/10799898009044096. [DOI] [PubMed] [Google Scholar]
  8. Chan T. M., Exton J. H. A rapid method for the determination of glycogen content and radioactivity in small quantities of tissue or isolated hepatocytes. Anal Biochem. 1976 Mar;71(1):96–105. doi: 10.1016/0003-2697(76)90014-2. [DOI] [PubMed] [Google Scholar]
  9. Christoffersen T., Morland J., Osnes J. B., Oye I. Development of cyclic AMP metabolism in rat liver. A correlative study of tissue levels of cyclic AMP, accumulation of cyclic AMP in slices, adenylate cyclase activity and cyclic nucleotide phosphodiesterase activity. Biochim Biophys Acta. 1973 Jul 28;313(2):338–349. doi: 10.1016/0304-4165(73)90033-0. [DOI] [PubMed] [Google Scholar]
  10. Creba J. A., Downes C. P., Hawkins P. T., Brewster G., Michell R. H., Kirk C. J. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochem J. 1983 Jun 15;212(3):733–747. doi: 10.1042/bj2120733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Exton J. H. Mechanisms involved in alpha-adrenergic phenomena: role of calcium ions in actions of catecholamines in liver and other tissues. Am J Physiol. 1980 Jan;238(1):E3–12. doi: 10.1152/ajpendo.1980.238.1.E3. [DOI] [PubMed] [Google Scholar]
  12. Exton J. H. Mechanisms involved in effects of catecholamines on liver carbohydrate metabolism. Biochem Pharmacol. 1979 Aug 1;28(15):2237–2240. doi: 10.1016/0006-2952(79)90684-1. [DOI] [PubMed] [Google Scholar]
  13. Freemark M., Handwerger S. Ovine placental lactogen stimulates glycogen synthesis in fetal rat hepatocytes. Am J Physiol. 1984 Jan;246(1 Pt 1):E21–E24. doi: 10.1152/ajpendo.1984.246.1.E21. [DOI] [PubMed] [Google Scholar]
  14. Golden S., Wals P. A., Katz J. An improved procedure for the assay of glycogen synthase and phosphorylase in rat liver homogenates. Anal Biochem. 1977 Feb;77(2):436–445. doi: 10.1016/0003-2697(77)90257-3. [DOI] [PubMed] [Google Scholar]
  15. Hems D. A., Whitton P. D. Control of hepatic glycogenolysis. Physiol Rev. 1980 Jan;60(1):1–50. doi: 10.1152/physrev.1980.60.1.1. [DOI] [PubMed] [Google Scholar]
  16. Ichihara A., Nakamura T., Tanaka K. Use of hepatocytes in primary culture for biochemical studies on liver functions. Mol Cell Biochem. 1982 Apr 2;43(3):145–160. doi: 10.1007/BF00223006. [DOI] [PubMed] [Google Scholar]
  17. Kirk C. J., Michell R. H., Hems D. A. Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin. Biochem J. 1981 Jan 15;194(1):155–165. doi: 10.1042/bj1940155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Litosch I., Lin S. H., Fain J. N. Rapid changes in hepatocyte phosphoinositides induced by vasopressin. J Biol Chem. 1983 Nov 25;258(22):13727–13732. [PubMed] [Google Scholar]
  19. McMillian M. K., Schanberg S. M., Kuhn C. M. Ontogeny of rat hepatic adrenoceptors. J Pharmacol Exp Ther. 1983 Oct;227(1):181–186. [PubMed] [Google Scholar]
  20. Moncany M. L., Plas C. Interaction of glucagon and epinephrine in the regulation of adenosine 3',5'-monophosphate-dependent glycogenolysis in the cultured fetal hepatocyte. Endocrinology. 1980 Dec;107(6):1667–1675. doi: 10.1210/endo-107-6-1667. [DOI] [PubMed] [Google Scholar]
  21. Sherline P., Eisen H., Glinsmann W. Acute hormonal regulation of cyclic AMP content and glycogen phosphorylase activity in fetal liver in organ culture. Endocrinology. 1974 Apr;94(4):935–939. doi: 10.1210/endo-94-4-935. [DOI] [PubMed] [Google Scholar]
  22. Strickland W. G., Blackmore P. F., Exton J. H. The role of calcium in alpha-adrenergic inactivation of glycogen synthase in rat hepatocytes and its inhibition by insulin. Diabetes. 1980 Aug;29(8):617–622. doi: 10.2337/diab.29.8.617. [DOI] [PubMed] [Google Scholar]
  23. Wood C. L., Babcock C. J., Blum J. J. Effects of vasopressin on carbohydrate metabolism in hepatocytes from dehydrated rats. Proc Soc Exp Biol Med. 1981 May;167(1):129–136. doi: 10.3181/00379727-167-41137. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES