Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jun 1;220(2):489–498. doi: 10.1042/bj2200489

Degradation of proteins in rat liver mitochondrial outer membrane transplanted into different cell types. Evidence for alternative processing.

S M Russell, J S Amenta, R J Mayer
PMCID: PMC1153651  PMID: 6743282

Abstract

The degradation of proteins in reductively [3H]methylated mitochondrial outer membrane (MOM) transplanted into cells by a poly(ethylene glycol)-mediated process has been studied. The average rate of degradation (t1/2 24-28 h) of MOM proteins transplanted into HTC cells was not the same as for endogenous MOM proteins (t1/2 56 h), mitoplast proteins (t1/2 120 h), plasma membrane proteins (t1/2 approx. 90 h) or cytosol proteins (t1/2 75 h). The degradation of transplanted MOM proteins was inhibited to the same extent (30-45%) as that of endogenous mitochondrial and plasma membrane proteins by leupeptin and NH4Cl. No inhibition of HTC cell cytosol protein degradation by NH4Cl was observed. NH4Cl differentially inhibited the degradation of endogenous MOM and mitoplast protein subunits as shown after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Proteins in MOM transplanted into tissue culture cells were degraded either with t1/2 24-28 h (MRC-5, B82 and A549 cells) or with t1/2 55-70 h (CHO-K1 and 3T3-L1 cells) similar to that of proteins in MOM transplanted into rat hepatocytes [Evans & Mayer (1983) Biochem. J. 216, 151-161]. The data suggest that membrane protein destruction is but the end part of a fundamental intracellular membrane recognition process.

Full text

PDF
489

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amenta J. S., Sargus M. J., Baccino F. M. Effect of microtubular or translational inhibitors on general cell protein degradation. Evidence for a dual catabolic pathway. Biochem J. 1977 Nov 15;168(2):223–227. doi: 10.1042/bj1680223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amenta J. S., Sargus M. J., Venkatesan S., Shinozuka H. Role of the vacuolar apparatus in augmented protein degradation in cultured fibroblasts. J Cell Physiol. 1978 Jan;94(1):77–86. doi: 10.1002/jcp.1040940110. [DOI] [PubMed] [Google Scholar]
  3. Baumann H., Hou E., Jahreis G. P. Preferential degradation of the terminal carbohydrate moiety of membrane glycoproteins in rat hepatoma cells and after transfer to the membranes of mouse fibroblasts. J Cell Biol. 1983 Jan;96(1):139–150. doi: 10.1083/jcb.96.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beigel M., Loyter A. Fusion-mediated implantation of band 3 into living cells. A new system to study degradation of membrane proteins. Exp Cell Res. 1983 Oct;148(1):95–103. doi: 10.1016/0014-4827(83)90190-8. [DOI] [PubMed] [Google Scholar]
  5. Bigelow S., Hough R., Rechsteiner M. The selective degradation of injected proteins occurs principally in the cytosol rather than in lysosomes. Cell. 1981 Jul;25(1):83–93. doi: 10.1016/0092-8674(81)90233-6. [DOI] [PubMed] [Google Scholar]
  6. Chandler C. S., Ballard F. J. Inhibition of pyruvate carboxylase degradation and total protein breakdown by lysosomotropic agents in 3T3-L1 cells. Biochem J. 1983 Mar 15;210(3):845–853. doi: 10.1042/bj2100845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dice J. F. Altered degradation of proteins microinjected into senescent human fibroblasts. J Biol Chem. 1982 Dec 25;257(24):14624–14627. [PubMed] [Google Scholar]
  9. Evans P. J., Mayer R. J. Comparison of the degradative fate of monoamine oxidase in endogenous and transplanted mitochondrial outer membrane in rat hepatocytes. Implications for the cytomorphological basis of protein catabolism. Biochem J. 1984 Apr 1;219(1):61–72. doi: 10.1042/bj2190061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans P. J., Mayer R. J. Degradation of transplanted mitochondrial proteins by hepatocyte monolayers. Biochem J. 1983 Oct 15;216(1):151–161. doi: 10.1042/bj2160151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galkin A. V., Tsoi T. V., Luzikov V. N. Regulation of mitochondrial biogenesis. Occurrence of non-functioning components of the mitochondrial respiratory chain in Saccharomyces cerevisiae grown in the presence of proteinase inhibitors: evidence for proteolytic control over assembly of the respiratory chain. Biochem J. 1980 Jul 15;190(1):145–156. doi: 10.1042/bj1900145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hare J. F., Hodges R. Turnover of mitochondrial inner membrane proteins in hepatoma monolayer cultures. J Biol Chem. 1982 Apr 10;257(7):3575–3580. [PubMed] [Google Scholar]
  13. Hare J. F., Hodges R. Turnover of mitochondrial matrix polypeptides in hepatoma monolayer cultures. J Biol Chem. 1982 Nov 10;257(21):12950–12953. [PubMed] [Google Scholar]
  14. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knecht E., Hernández-Yago J., Martinez-Ramón A., Grisolía S. Fate of proteins synthesized in mitochondria of cultured mammalian cells revealed by electron microscope radioautography. Exp Cell Res. 1980 Jan;125(1):191–199. doi: 10.1016/0014-4827(80)90203-7. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lopez-Saura P., Trouet A., Tulkens P. Analytical fractionation of cultured hepatoma cells (HTC cells). Biochim Biophys Acta. 1978 Nov 1;543(4):430–449. doi: 10.1016/0304-4165(78)90298-2. [DOI] [PubMed] [Google Scholar]
  18. Loyter A., Zakai N., Kulka R. G. "Ultramicroinjection" of macromolecules or small particles into animal cells. A new technique based on virus-induced cell fusion. J Cell Biol. 1975 Aug;66(2):292–304. doi: 10.1083/jcb.66.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mayer R. J., Evans P., Russell S., Amenta J. S. Degradative fate of transplanted proteins. Ciba Found Symp. 1984;103:202–219. doi: 10.1002/9780470720844.ch13. [DOI] [PubMed] [Google Scholar]
  20. Neff N. T., Bourret L., Miao P., Dice J. F. Degradation of proteins microinjected into IMR-90 human diploid fibroblasts. J Cell Biol. 1981 Oct;91(1):184–194. doi: 10.1083/jcb.91.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rote K. V., Rechsteiner M. Degradation of microinjected proteins: effects of lysosomotropic agents and inhibitors of autophagy. J Cell Physiol. 1983 Jul;116(1):103–110. doi: 10.1002/jcp.1041160116. [DOI] [PubMed] [Google Scholar]
  22. Russell S. M., Burgess R. J., Mayer R. J. Protein degradation in rat liver during post-natal development. Biochem J. 1980 Oct 15;192(1):321–330. doi: 10.1042/bj1920321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Russell S. M., Burgess R. J., Mayer R. J. Protein degradation in rat liver. Evidence for populations of protein degradation rates in cellular organelles. Biochim Biophys Acta. 1982 Jan 12;714(1):34–45. doi: 10.1016/0304-4165(82)90124-6. [DOI] [PubMed] [Google Scholar]
  24. Russell S. M., Mayer R. J. Degradation of transplanted rat liver mitochondrial-outer-membrane proteins in hepatoma cells. Biochem J. 1983 Oct 15;216(1):163–175. doi: 10.1042/bj2160163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zavortink M., Thacher T., Rechsteiner M. Degradation of proteins microinjected into cultured mammalian cells. J Cell Physiol. 1979 Jul;100(1):175–185. doi: 10.1002/jcp.1041000118. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES