Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jun 1;220(2):499–506. doi: 10.1042/bj2200499

Photoaffinity labelling of nucleoside-transport proteins in plasma membranes isolated from rat and guinea-pig liver.

J S Wu, J D Young
PMCID: PMC1153652  PMID: 6743283

Abstract

Nitrobenzylthioinosine (NBMPR) was employed as a probe of the nucleoside transporters from rat and guinea-pig liver. Purified liver plasma membranes prepared on self-generating Percoll density gradients exhibited 16-fold (rat) and 10-fold (guinea pig) higher [3H]NBMPR-binding activities than in crude liver homogenates (3.69 and 14.7 pmol/mg of protein for rat and guinea-pig liver membranes respectively, and 0.23 and 1.47 pmol/mg of protein for crude liver homogenates respectively). Binding to membranes from both species was saturable (apparent Kd 0.14 and 0.63 nM for rat and guinea-pig membranes respectively) and inhibited by uridine, adenosine, nitrobenzylthioguanosine (NBTGR) and dilazep. Uridine was an apparent competitive inhibitor of high-affinity NBMPR binding to rat membranes (apparent Ki 1.5 mM). There was a marked species difference with respect to dipyridamole inhibition of NBMPR binding (50% inhibition at 0.2 and greater than 100 microM for guinea-pig and rat respectively). These results are consistent with a role of NBMPR-binding proteins in liver nucleoside transport. Exposure of rat and guinea pig membranes to high-intensity u.v. light in the presence of [3H]NBMPR resulted in the selective radio-labelling of membrane proteins which migrated on sodium dodecyl sulphate/polyacrylamide gels with apparent Mr values in the same range as that of the human erythrocyte nucleoside transporter (45 000-66 000). Covalent labelling of these proteins was abolished when photolysis was performed in the presence of non-radio-active NBTGR as competing ligand.

Full text

PDF
499

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann E., Allmann D. W., Green D. E. The membrane systems of the mitochondrion. I. The S fraction of the outer membrane of beef heart mitochondria. Arch Biochem Biophys. 1966 Jul;115(1):153–164. doi: 10.1016/s0003-9861(66)81051-2. [DOI] [PubMed] [Google Scholar]
  2. Belsham G. J., Denton R. M., Tanner M. J. Use of a novel rapid preparation of fat-cell plasma membranes employing Percoll to investigate the effects of insulin and adrenaline on membrane protein phosphorylation within intact fat-cells. Biochem J. 1980 Nov 15;192(2):457–467. doi: 10.1042/bj1920457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cass C. E., Gaudette L. A., Paterson A. R. Mediated transport of nucleosides in human erythrocytes. Specific binding of the inhibitor nitrobenzylthioinosine to nucleoside transport sites in the erythrocyte membrane. Biochim Biophys Acta. 1974 Apr 12;345(1):1–10. doi: 10.1016/0005-2736(74)90239-9. [DOI] [PubMed] [Google Scholar]
  4. Cass C. E., Kolassa N., Uehara Y., Dahlig-Harley E., Harley E. R., Paterson A. R. Absence of binding sites for the transport inhibitor nitrobenzylthioinosine on nucleoside transport-deficient mouse lymphoma cells. Biochim Biophys Acta. 1981 Dec 21;649(3):769–777. doi: 10.1016/0005-2736(81)90182-6. [DOI] [PubMed] [Google Scholar]
  5. Cass C. E., Paterson A. R. Nitrobenzylthionionosine binding sites in the erythrocyte membrane. Biochim Biophys Acta. 1976 Jan 21;419(2):285–294. doi: 10.1016/0005-2736(76)90354-0. [DOI] [PubMed] [Google Scholar]
  6. Cohen A., Ullman B., Martin D. W., Jr Characterization of a mutant mouse lymphoma cell with deficient transport of purine and pyrimidine nucleosides. J Biol Chem. 1979 Jan 10;254(1):112–116. [PubMed] [Google Scholar]
  7. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  8. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eilam Y., Cabantchik Z. I. Nucleoside transport in mammalian cell membranes: a specific inhibitory mechanism of high affinity probes. J Cell Physiol. 1977 Aug;92(2):185–201. doi: 10.1002/jcp.1040920207. [DOI] [PubMed] [Google Scholar]
  10. Hammond J. R., Paterson A. R., Clanachan A. S. Benzodiazepine inhibition of site-specific binding of nitrobenzylthioinosine, an inhibitor of adenosine transport. Life Sci. 1981 Nov 23;29(21):2207–2214. doi: 10.1016/0024-3205(81)90492-6. [DOI] [PubMed] [Google Scholar]
  11. Harley E. R., Paterson A. R., Cass C. E. Initial rate kinetics of the transport of adenosine and 4-amino-7-(beta-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (tubercidin) in cultured cells. Cancer Res. 1982 Apr;42(4):1289–1295. [PubMed] [Google Scholar]
  12. Hopkins S. V., Goldie R. G. A species difference in the uptake of adenosine by heart. Biochem Pharmacol. 1971 Dec;20(12):3359–3365. doi: 10.1016/0006-2952(71)90440-0. [DOI] [PubMed] [Google Scholar]
  13. Hubbard A. L., Wall D. A., Ma A. Isolation of rat hepatocyte plasma membranes. I. Presence of the three major domains. J Cell Biol. 1983 Jan;96(1):217–229. doi: 10.1083/jcb.96.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jarvis S. M., Hammond J. R., Paterson A. R., Clanachan A. S. Species differences in nucleoside transport. A study of uridine transport and nitrobenzylthioinosine binding by mammalian erythrocytes. Biochem J. 1982 Oct 15;208(1):83–88. doi: 10.1042/bj2080083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jarvis S. M., Janmohamed S. N., Young J. D. Kinetics of nitrobenzylthioinosine binding to the human erythrocyte nucleoside transporter. Biochem J. 1983 Dec 15;216(3):661–667. doi: 10.1042/bj2160661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jarvis S. M., McBride D., Young J. D. Erythrocyte nucleoside transport: asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites. J Physiol. 1982 Mar;324:31–46. doi: 10.1113/jphysiol.1982.sp014099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jarvis S. M., Young J. D., Ansay M., Archibald A. L., Harkness R. A., Simmonds R. J. Is inosine the physiological energy source of pig erythrocytes? Biochim Biophys Acta. 1980 Mar 27;597(1):183–188. doi: 10.1016/0005-2736(80)90162-5. [DOI] [PubMed] [Google Scholar]
  18. Jarvis S. M., Young J. D. Extraction and partial purification of the nucleoside-transport system from human erythrocytes based on the assay of nitrobenzylthioinosine-binding activity. Biochem J. 1981 Jan 15;194(1):331–339. doi: 10.1042/bj1940331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jarvis S. M., Young J. D. Nucleoside transport in human and sheep erythrocytes. Evidence that nitrobenzylthioinosine binds specifically to functional nucleoside-transport sites. Biochem J. 1980 Aug 15;190(2):377–383. doi: 10.1042/bj1900377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jarvis S. M., Young J. D. Solubilization of the nucleoside translocation system from human and nucleoside-permeable sheep erythrocytes. FEBS Lett. 1980 Aug 11;117(1):33–36. doi: 10.1016/0014-5793(80)80907-0. [DOI] [PubMed] [Google Scholar]
  21. Jones R. B., Staton A. J., Kiesow Isolation of rat liver plasma membranes by zonal centrifugation: increased yield with Ca2+. Anal Biochem. 1973 Sep;55(1):154–159. doi: 10.1016/0003-2697(73)90300-x. [DOI] [PubMed] [Google Scholar]
  22. Kolassa N., Paterson A. R. Uptake of cytidine by isolated, perfused mouse liver. Can J Physiol Pharmacol. 1982 Feb;60(2):167–173. doi: 10.1139/y82-027. [DOI] [PubMed] [Google Scholar]
  23. Kolassa N., Pfleger K. Adenosine uptake by erythrocytes of man, rat and guinea-pig and its inhibition by hexobendine and dipyridamole. Biochem Pharmacol. 1975 Jan 1;24(1):154–156. doi: 10.1016/0006-2952(75)90331-7. [DOI] [PubMed] [Google Scholar]
  24. Kolassa N., Pfleger K., Träm M. Species differences in action and elimination of adenosine after dipyridamole and hexobendine. Eur J Pharmacol. 1971;13(3):320–325. doi: 10.1016/0014-2999(71)90221-4. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lerner M. H., Lowy B. A. The formation of adenosine in rabbit liver and its possible role as a direct precursor of erythrocyte adenine nucleotides. J Biol Chem. 1974 Feb 10;249(3):959–966. [PubMed] [Google Scholar]
  28. Lum C. T., Marz R., Plagemann P. G., Wohlhueter R. M. Adenosine transport and metabolism in mouse leukemia cells and in canine thymocytes and peripheral blood leukocytes. J Cell Physiol. 1979 Nov;101(2):173–200. doi: 10.1002/jcp.1041010202. [DOI] [PubMed] [Google Scholar]
  29. Marangos P. J., Patel J., Clark-Rosenberg R., Martino A. M. [3H]nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain. J Neurochem. 1982 Jul;39(1):184–191. doi: 10.1111/j.1471-4159.1982.tb04717.x. [DOI] [PubMed] [Google Scholar]
  30. Murray A. W. The biological significance of purine salvage. Annu Rev Biochem. 1971;40:811–826. doi: 10.1146/annurev.bi.40.070171.004115. [DOI] [PubMed] [Google Scholar]
  31. Paterson A. R., Kolassa N., Cass C. E. Transport of nucleoside drugs in animal cells. Pharmacol Ther. 1981;12(3):515–536. doi: 10.1016/0163-7258(81)90096-6. [DOI] [PubMed] [Google Scholar]
  32. Paterson A. R., Lau E. Y., Dahlig E., Cass C. E. A common basis for inhibition of nucleoside transport by dipyridamole and nitrobenzylthioinosine? Mol Pharmacol. 1980 Jul;18(1):40–44. [PubMed] [Google Scholar]
  33. Paul B., Chen M. F., Paterson A. R. Inhibitors of nucleoside transport. A structure-activity study using human erythrocytes. J Med Chem. 1975 Oct;18(10):968–973. doi: 10.1021/jm00244a003. [DOI] [PubMed] [Google Scholar]
  34. Pritchard J. B., O'Connor N., Oliver J. M., Berlin R. D. Uptake and supply of purine compounds by the liver. Am J Physiol. 1975 Oct;229(4):967–972. doi: 10.1152/ajplegacy.1975.229.4.967. [DOI] [PubMed] [Google Scholar]
  35. Rogler-Brown T., Parks R. E., Jr Tight binding inhibitors--VIII. Studies of the interactions of 2'-deoxycoformycin and transport inhibitors with the erythrocytic nucleoside transport system. Biochem Pharmacol. 1980 Sep 15;29(18):2491–2497. doi: 10.1016/0006-2952(80)90354-8. [DOI] [PubMed] [Google Scholar]
  36. Shi M. M., Wu J. S., Lee C. M., Young J. D. Nucleoside transport. Photoaffinity labelling of high-affinity nitrobenzylthioinosine binding sites in rat and guinea pig lung. Biochem Biophys Res Commun. 1984 Jan 30;118(2):594–600. doi: 10.1016/0006-291x(84)91344-5. [DOI] [PubMed] [Google Scholar]
  37. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu J. S., Jarvis S. M., Young J. D. The human erythrocyte nucleoside and glucose transporters are both band 4.5 membrane polypeptides. Biochem J. 1983 Sep 15;214(3):995–997. doi: 10.1042/bj2140995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wu J. S., Kwong F. Y., Jarvis S. M., Young J. D. Identification of the erythrocyte nucleoside transporter as a band 4.5 polypeptide. Photoaffinity labeling studies using nitrobenzylthioinosine. J Biol Chem. 1983 Nov 25;258(22):13745–13751. [PubMed] [Google Scholar]
  40. Young J. D., Jarvis S. M. Nucleoside transport in animal cells. Biosci Rep. 1983 Apr;3(4):309–322. doi: 10.1007/BF01122895. [DOI] [PubMed] [Google Scholar]
  41. Young J. D., Jarvis S. M., Robins M. J., Paterson A. R. Photoaffinity labeling of the human erythrocyte nucleoside transporter by N6-(p-Azidobenzyl)adenosine and nitrobenzylthioinosine. Evidence that the transporter is a band 4.5 polypeptide. J Biol Chem. 1983 Feb 25;258(4):2202–2208. [PubMed] [Google Scholar]
  42. Young J. D. Nucleoside transport in sheep erythrocytes: genetically controlled transport variation and its influence on erythrocyte ATP concentrations. J Physiol. 1978 Apr;277:325–339. doi: 10.1113/jphysiol.1978.sp012274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Amelsvoort J. M., Sips H. J., van Dam K. Sodium-dependent alanine transport in plasma-membrane vesicles from rat liver. Biochem J. 1978 Sep 15;174(3):1083–1086. doi: 10.1042/bj1741083. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES