Abstract
Native DNAase (deoxyribonuclease) activities derived from mouse peritoneal cavity and peripheral blood components were separated, detected, and characterized by electrophoresis into polyacrylamide gels containing DNA, followed by incubation of the gels, and staining of the substrate to reveal only the DNAase activities. Resident peritoneal macrophages contained 12 DNAase-II-like activities that were characteristic of that cell type, whereas lymphocytes and granulocytes each contained five DNAases. Induction of inflammation by peritoneal injection of thioglycollate resulted in changes in macrophage DNAase expression, including: increased total DNAase activity, a decrease in the number of activities from 12 to 11, increased activity of a specific subset of the enzymes, and a change in the apparent size of a specific subset of the enzymes. Electrophoretic and enzymic properties and sensitivity to endo-beta-N-acetylglucosaminidase H indicated that the macrophage activities probably represented charge variants of one or two parent peptide chains.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beelen R. H., Broekhuis-Fluitsma D. M., Korn C., Hoefsmit C. M. Identification of exudate-resident macrophages on the basis of peroxidatic activity. J Reticuloendothel Soc. 1978 Feb;23(2):103–110. [PubMed] [Google Scholar]
- Berg T., Boman D. Distribution of lysosomal enzymes between parenchymal and Kupffer cells of rat liver. Biochim Biophys Acta. 1973 Oct 10;321(2):585–596. doi: 10.1016/0005-2744(73)90201-5. [DOI] [PubMed] [Google Scholar]
- Blank A., Dekker C. A. Ribonucleases of human serum, urine, cerebrospinal fluid, and leukocytes. Activity staining following electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Biochemistry. 1981 Apr 14;20(8):2261–2267. doi: 10.1021/bi00511a030. [DOI] [PubMed] [Google Scholar]
- Bont W. S., De Vries J. E., Geel M., Van Dongen A., Loos H. A. Separation of human lymphocytes and monocytes by velocity sedimentation at unit gravity. J Immunol Methods. 1979;29(1):1–16. doi: 10.1016/0022-1759(79)90120-0. [DOI] [PubMed] [Google Scholar]
- DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelson P. J., Cohn Z. A. 5'-Nucleotidase activity of mouse peritoneal macrophages. I. Synthesis and degradation in resident and inflammatory populations. J Exp Med. 1976 Dec 1;144(6):1581–1595. doi: 10.1084/jem.144.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FELSENFELD G., SANDEEN G. The dispersion of the hyperchromic effect in thermally induced transitions of nucleic acids. J Mol Biol. 1962 Dec;5:587–610. doi: 10.1016/s0022-2836(62)80088-6. [DOI] [PubMed] [Google Scholar]
- FERGUSON K. A. STARCH-GEL ELECTROPHORESIS--APPLICATION TO THE CLASSIFICATION OF PITUITARY PROTEINS AND POLYPEPTIDES. Metabolism. 1964 Oct;13:SUPPL–SUPPL1002. doi: 10.1016/s0026-0495(64)80018-4. [DOI] [PubMed] [Google Scholar]
- Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
- Heifetz A., Prager M. D. The effect of butyrate on sulfated glycoprotein biosynthesis by human kidney tumor cells. J Biol Chem. 1981 Jul 10;256(13):6529–6532. [PubMed] [Google Scholar]
- Hunt L. A., Wright S. E. Rous sarcoma virus glycoproteins contain hybrid-type oligosaccharides. J Virol. 1981 Aug;39(2):646–650. doi: 10.1128/jvi.39.2.646-650.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
- Li C. Y., Lam K. W., Yam L. T. Esterases in human leukocytes. J Histochem Cytochem. 1973 Jan;21(1):1–12. doi: 10.1177/21.1.1. [DOI] [PubMed] [Google Scholar]
- Meyers O. T., Dannenberg A. M., Jr, Mizunoe K. Polymorphonuclear exudate cells and pulmonary alveolar macrophages. 3. Deoxyribonuclease and ribonuclease: properties and quantitative assay in macrophages from tuberculous and control inbred rabbits. J Reticuloendothel Soc. 1970 Jan;7(1):15–31. [PubMed] [Google Scholar]
- Morahan P. S., Edelson P. J., Gass K. Changes in macrophage ectoenzymes associated with anti-tumor activity. J Immunol. 1980 Sep;125(3):1312–1317. [PubMed] [Google Scholar]
- Rosenthal A. L., Lacks S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 May 15;80(1):76–90. doi: 10.1016/0003-2697(77)90627-3. [DOI] [PubMed] [Google Scholar]
- Tai T., Yamashita K., Kobata A. The substrate specificities of endo-beta-N-acetylglucosaminidases CII and H. Biochem Biophys Res Commun. 1977 Sep 9;78(1):434–441. doi: 10.1016/0006-291x(77)91273-6. [DOI] [PubMed] [Google Scholar]
- Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]
- Tarentino A. L., Plummer T. H., Jr, Maley F. A re-evaluation of the oligosaccharide sequence associated with ovalbumin. J Biol Chem. 1972 Apr 25;247(8):2629–2631. [PubMed] [Google Scholar]
- Zöllner E. J., Klepsch D. M., Zahn R. K., Knepper R. Deoxyribonuclease in human parotid saliva. Enzyme. 1975;19(1):60–64. doi: 10.1159/000458972. [DOI] [PubMed] [Google Scholar]
- von Figura K., Klein U. Isolation and characterization of phosphorylated oligosaccharides from alpha-N-acetylglucosaminidase that are recognized by cell-surface receptors. Eur J Biochem. 1979 Mar;94(2):347–354. doi: 10.1111/j.1432-1033.1979.tb12900.x. [DOI] [PubMed] [Google Scholar]






