Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jun 15;220(3):701–706. doi: 10.1042/bj2200701

gamma-butyrobetaine in tissues and serum of fed and starved rats determined by an enzymic radioisotopic procedure.

H Noël, R Parvin, S V Pande
PMCID: PMC1153686  PMID: 6466296

Abstract

A method for the determination of picomole quantities of gamma-butyrobetaine and its application for the determination of gamma-butyrobetaine distribution in tissues are described. The method is based on the quantitative conversion of gamma-butyrobetaine into carnitine by using a 50-60%-satd.-(NH4)2SO4 fraction of rat liver supernatant as the source of gamma-butyrobetaine hydroxylase [4-trimethylaminobutyrate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating), EC 1.14.11.1]; the carnitine formed is then measured enzymically. The mean gamma-butyrobetaine content, as nmol/g wet wt. of tissue, ranged from a low of 4.6 in livers to a high of 12.3 in hearts of normal fed male adult rats. Starvation for 48 h did not affect the gamma-butyrobetaine concentration in serum, liver and brain, but that in skeletal muscles, kidney and heart was increased. These data are in line with the present views that most tissues are able to produce gamma-butyrobetaine, and show that starvation enhances the synthesis and/or the retention of this compound in many tissues. The observed high affinity of gamma-butyrobetaine hydroxylase for gamma-butyrobetaine (Km 7 microM), the high activity of this enzyme and the low concentration of gamma-butyrobetaine in liver indicate that gamma-butyrobetaine availability is one of the factors that normally limit carnitine synthesis.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROEKHUYSEN J., DELTOUR G. [Carnitine content of several biological media]. Ann Biol Clin (Paris) 1961 Jul-Sep;19:549–558. [PubMed] [Google Scholar]
  2. Bohmer T., Bremer J. Propionylcarnitine. Physiological variations in vivo. Biochim Biophys Acta. 1968 May 1;152(3):559–567. doi: 10.1016/0005-2760(68)90096-9. [DOI] [PubMed] [Google Scholar]
  3. Brass E. P., Hoppel C. L. Carnitine metabolism in the fasting rat. J Biol Chem. 1978 Apr 25;253(8):2688–2693. [PubMed] [Google Scholar]
  4. Carter A. L., Stratman F. W. A rapid and sensitive assay of gamma-butyrobetaine hydroxylase. FEBS Lett. 1980 Feb 25;111(1):112–114. doi: 10.1016/0014-5793(80)80773-3. [DOI] [PubMed] [Google Scholar]
  5. Cederblad G., Lindstedt S. Metabolism of labeled carnitine in the rat. Arch Biochem Biophys. 1976 Jul;175(1):173–180. doi: 10.1016/0003-9861(76)90496-3. [DOI] [PubMed] [Google Scholar]
  6. Christiansen R. Z., Bremer J. Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta. 1976 Nov 2;448(4):562–577. doi: 10.1016/0005-2736(76)90110-3. [DOI] [PubMed] [Google Scholar]
  7. Cox R. A., Hoppel C. L. Biosynthesis of carnitine and 4-N-trimethylaminobutyrate from 6-N-trimethyl-lysine. Biochem J. 1973 Dec;136(4):1083–1090. doi: 10.1042/bj1361083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox R. A., Hoppel C. L. Carnitine and trimethylaminobutyrate synthesis in rat tissues. Biochem J. 1974 Sep;142(3):699–701. doi: 10.1042/bj1420699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daveluy A., Parvin R., Pande S. V. Enzymatic synthesis of radioactive (-)-carnitine from gamma-butyrobetaine prepared by the methylation of gamma-aminobutyric acid. Anal Biochem. 1982 Jan 15;119(2):286–292. doi: 10.1016/0003-2697(82)90587-5. [DOI] [PubMed] [Google Scholar]
  10. Englard S., Horwitz L. J., Mills J. T. A simplified method for the measurement of gamma-butyrobetaine hydroxylase activity. J Lipid Res. 1978 Nov;19(8):1057–1063. [PubMed] [Google Scholar]
  11. FRITZ I. B., SCHULTZ S. K. CARNITINE ACETYLTRANSFERASE. II. INHIBIITON BY CARNITINE ANALOGUES AND BY SULFHYDRYL REAGENTS. J Biol Chem. 1965 May;240:2188–2192. [PubMed] [Google Scholar]
  12. Haigler H. T., Broquist H. P. Carnitine synthesis in rat tissue slices. Biochem Biophys Res Commun. 1974 Feb 4;56(3):676–681. doi: 10.1016/0006-291x(74)90658-5. [DOI] [PubMed] [Google Scholar]
  13. Henderson L. M., Nelson P. J., Henderson L. Mammalian enzymes of trimethyllysine conversion to trimethylaminobutyrate. Fed Proc. 1982 Oct;41(12):2843–2847. [PubMed] [Google Scholar]
  14. Lindstedt G. Hydroxylation of gamma-butyrobetaine to carnitine in rat liver. Biochemistry. 1967 May;6(5):1271–1282. doi: 10.1021/bi00857a007. [DOI] [PubMed] [Google Scholar]
  15. Lindstedt G., Lindstedt S. Cofactor requirements of gamma-butyrobetaine hydroxylase from rat liver. J Biol Chem. 1970 Aug 25;245(16):4178–4186. [PubMed] [Google Scholar]
  16. MARQUIS N. R., FRITZ I. B. THE DISTRIBUTION OF CARNITINE, ACETYLCARNITINE, AND CARNITINE ACETYLTRANSFERASE IN RAT TISSUES. J Biol Chem. 1965 May;240:2193–2196. [PubMed] [Google Scholar]
  17. Pande S. V., Parvin R. Clofibrate enhancement of mitochondrial carnitine transport system of rat liver and augmentation of liver carnitine and gamma-butyrobetaine hydroxylase activity by thyroxine. Biochim Biophys Acta. 1980 Mar 21;617(3):363–370. doi: 10.1016/0005-2760(80)90002-8. [DOI] [PubMed] [Google Scholar]
  18. Parvin R., Pande S. V. Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocase-mediated transport of fatty acids into liver mitochondria under ketogenic conditions. J Biol Chem. 1979 Jun 25;254(12):5423–5429. [PubMed] [Google Scholar]
  19. Parvin R., Pande S. V. Microdetermination of (-)carnitine and carnitine acetyltransferase activity. Anal Biochem. 1977 May 1;79(1-2):190–201. doi: 10.1016/0003-2697(77)90393-1. [DOI] [PubMed] [Google Scholar]
  20. Pearson D. J., Tubbs P. K. Carnitine and derivatives in rat tissues. Biochem J. 1967 Dec;105(3):953–963. doi: 10.1042/bj1050953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rebouche C. J., Engel A. G. Tissue distribution of carnitine biosynthetic enzymes in man. Biochim Biophys Acta. 1980 Jun 5;630(1):22–29. doi: 10.1016/0304-4165(80)90133-6. [DOI] [PubMed] [Google Scholar]
  22. Rebouche C. J. Sites and regulation of carnitine biosynthesis in mammals. Fed Proc. 1982 Oct;41(12):2848–2852. [PubMed] [Google Scholar]
  23. Sandor A., Kispal G., Kerner J., Alkonyi I. Combined effect of ascorbic acid deficiency and underfeeding on the hepatic carnitine level in guinea-pigs. Experientia. 1983 May 15;39(5):512–513. doi: 10.1007/BF01965181. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES