Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jun 15;220(3):803–809. doi: 10.1042/bj2200803

Characterization of the homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase.

C J Dix, A D Habberfield, B A Cooke
PMCID: PMC1153699  PMID: 6087796

Abstract

The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase involves a cyclic AMP-dependent lesion that is after the G-protein.

Full text

PDF
803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooker G., Pedone C., Barovsky K. Selective reduction of forskolin-stimulated cyclic AMP accumulation by inhibitors of protein synthesis. Science. 1983 Jun 10;220(4602):1169–1170. doi: 10.1126/science.6190226. [DOI] [PubMed] [Google Scholar]
  2. Clark R. B., Goka T. J., Green D. A., Barber R., Butcher R. W. Differences in the forskolin activation of adenylate cyclases in wild-type and variant lymphoma cells. Mol Pharmacol. 1982 Nov;22(3):609–613. [PubMed] [Google Scholar]
  3. Cooke B. A., Lindh L. M., Janszen F. H., van Driel M. J., Bakker C. P., van der Plank M. P., van der Molen H. J. A Leydig cell tumour: a model for the study of lutropin action. Biochim Biophys Acta. 1979 Mar 22;583(3):320–331. doi: 10.1016/0304-4165(79)90456-2. [DOI] [PubMed] [Google Scholar]
  4. Darfler F. J., Mahan L. C., Koachman A. M., Insel P. A. Stimulation of forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J Biol Chem. 1982 Oct 25;257(20):11901–11907. [PubMed] [Google Scholar]
  5. Dix C. J., Cooke B. A. Effect of lutropin and cycloheximide on lutropin receptors and cyclic AMP production in Leydig tumour cells in vitro. Biochem J. 1981 Jun 15;196(3):713–719. doi: 10.1042/bj1960713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dix C. J., Cooke B. A. Resensitization of lutropin-desensitized tumour Leydig-cell adenylate cyclase with human erythrocyte membranes. Biochem J. 1982 May 15;204(2):613–616. doi: 10.1042/bj2040613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dix C. J., Schumacher M., Cooke B. A. Desensitization of tumour Leydig cells by lutropin: evidence for uncoupling of the lutropin receptor from the guanine nucleotide-binding protein. Biochem J. 1982 Mar 15;202(3):739–745. doi: 10.1042/bj2020739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ezra E., Salomon Y. Mechanism of desensitization of adenylate cyclase in lutropin. GTP-dependent uncoupling of the receptor. J Biol Chem. 1980 Jan 25;255(2):653–658. [PubMed] [Google Scholar]
  9. Fishman P. H., Mallorga P., Tallman J. F. Catecholamine-induced desensitization of adenylate cyclase in rat glioma C6 cells. Evidence for a specific uncoupling of beta-adrenergic receptors from a functional regulatory component of adenylate cyclase. Mol Pharmacol. 1981 Sep;20(2):310–318. [PubMed] [Google Scholar]
  10. Forte L. R. Activation of renal adenylate cyclase by forskolin: assessment of enzymatic activity in animal models of the secondary hyperparathyroid state. Arch Biochem Biophys. 1983 Sep;225(2):898–905. doi: 10.1016/0003-9861(83)90104-2. [DOI] [PubMed] [Google Scholar]
  11. Fradkin J. E., Cook G. H., Kilhoffer M. C., Wolff J. Forskolin stimulation of thyroid adenylate cyclase and cyclic 3',5'-adenosine monophosphate accumulation. Endocrinology. 1982 Sep;111(3):849–856. doi: 10.1210/endo-111-3-849. [DOI] [PubMed] [Google Scholar]
  12. Green D. A., Clark R. B. Adenylate cyclase coupling proteins are not essential for agonist-specific desensitization of lymphoma cells. J Biol Chem. 1981 Mar 10;256(5):2105–2108. [PubMed] [Google Scholar]
  13. Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
  14. Heyworth C. M., Houslay M. D. Challenge of hepatocytes by glucagon triggers a rapid modulation of adenylate cyclase activity in isolated membranes. Biochem J. 1983 Jul 15;214(1):93–98. doi: 10.1042/bj2140093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunzicker-Dunn M., Derda D., Jungmann R. A., Birnbaumer L. Resensitization of the desensitized follicular adenylyl cyclase system to luteinizing hormone. Endocrinology. 1979 Jun;104(6):1785–1793. doi: 10.1210/endo-104-6-1785. [DOI] [PubMed] [Google Scholar]
  16. Insel P. A., Stengel D., Ferry N., Hanoune J. Regulation of adenylate cyclase of human platelet membranes by forskolin. J Biol Chem. 1982 Jul 10;257(13):7485–7490. [PubMed] [Google Scholar]
  17. Iyengar R., Bhat M. K., Riser M. E., Birnbaumer L. Receptor-specific desensitization of the S49 lymphoma cell adenylyl cyclase. Unaltered behavior of the regulatory component. J Biol Chem. 1981 May 25;256(10):4810–4815. [PubMed] [Google Scholar]
  18. Levi S. N., Schumacher M., Dix C. J., Thomas M. G., Cooke B. A. Guanine nucleotide mediated desensitization of adenylate cyclase in cell free preparations from a Leydig cell tumour. Int J Androl. 1982 Dec;5(6):570–578. doi: 10.1111/j.1365-2605.1982.tb00290.x. [DOI] [PubMed] [Google Scholar]
  19. Pike L. J., Lefkowitz R. J. Use of cell fusion techniques to probe the mechanism of catecholamine-induced desensitization of adenylate cyclase in frog erythrocytes. Biochim Biophys Acta. 1980 Oct 15;632(3):354–365. doi: 10.1016/0304-4165(80)90231-7. [DOI] [PubMed] [Google Scholar]
  20. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  21. Ross E. M., Gilman A. G. Resolution of some components of adenylate cyclase necessary for catalytic activity. J Biol Chem. 1977 Oct 25;252(20):6966–6969. [PubMed] [Google Scholar]
  22. Ross E. M. Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase. J Biol Chem. 1982 Sep 25;257(18):10751–10758. [PubMed] [Google Scholar]
  23. Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
  24. Siegl A. M., Daly J. W., Smith J. B. Inhibition of aggregation and stimulation of cyclic AMP generation in intact human platelets by the diterpene forskolin. Mol Pharmacol. 1982 May;21(3):680–687. [PubMed] [Google Scholar]
  25. Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
  26. Su Y. F., Harden T. K., Perkins J. P. Catecholamine-specific desensitization of adenylate cyclase. Evidence for a multistep process. J Biol Chem. 1980 Aug 10;255(15):7410–7419. [PubMed] [Google Scholar]
  27. Van Sande J., Cochaux P., Mockel J., Dumont J. E. Stimulation by forskolin of the thyroid adenylate cyclase, cyclic AMP accumulation and iodine metabolism. Mol Cell Endocrinol. 1983 Jan;29(1):109–119. doi: 10.1016/0303-7207(83)90009-6. [DOI] [PubMed] [Google Scholar]
  28. Wong S. K., Martin B. R. The role of a guanine nucleotide-binding protein in the activation of rat liver plasma-membrane adenylate cyclase by forskolin. Biochem J. 1983 Dec 15;216(3):753–759. doi: 10.1042/bj2160753. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES