Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Oct 1;207(1):1–10. doi: 10.1042/bj2070001

Current problems in mechanistic studies of serine and cysteine proteinases.

L Polgár, P Halász
PMCID: PMC1153816  PMID: 6758764

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Petsko G. A., Tsernoglou D. Crystal structure of elastase-substrate complex at -- 55 degrees C. Nature. 1976 Sep 23;263(5575):297–300. doi: 10.1038/263297a0. [DOI] [PubMed] [Google Scholar]
  2. Angelides K. J., Fink A. L. Cryoenzymology of papain: reaction mechanism with an ester substrate. Biochemistry. 1978 Jun 27;17(13):2659–2668. doi: 10.1021/bi00606a032. [DOI] [PubMed] [Google Scholar]
  3. Angelides K. J., Fink A. L. Mechanism of Action of papain with a specific anilide substrate. Biochemistry. 1979 May 29;18(11):2355–2363. doi: 10.1021/bi00578a034. [DOI] [PubMed] [Google Scholar]
  4. Angelides K. J., Fink A. L. Mechanism of thiol protease catalysis: detection and stabilization of a tetrahedral intermediate in papain catalysis. Biochemistry. 1979 May 29;18(11):2363–2369. doi: 10.1021/bi00578a035. [DOI] [PubMed] [Google Scholar]
  5. BENDER M. L., KEZDY J. MECHANISM OF ACTION OF PROTEOLYTIC ENZYMES. Annu Rev Biochem. 1965;34:49–76. doi: 10.1146/annurev.bi.34.070165.000405. [DOI] [PubMed] [Google Scholar]
  6. Baillargeon M. W., Laskowski M., Jr, Neves D. E., Porubcan M. A., Santini R. E., Markely J. L. Soybean trypsin inhibitor (Kunitz) and its complex with trypsin. Carbon-13 nuclear magnetic resonance studies of the reactive site arginine. Biochemistry. 1980 Dec 9;19(25):5703–5703. doi: 10.1021/bi00566a006. [DOI] [PubMed] [Google Scholar]
  7. Baker E. N. Structure of actinidin, after refinement at 1.7 A resolution. J Mol Biol. 1980 Aug 25;141(4):441–484. doi: 10.1016/0022-2836(80)90255-7. [DOI] [PubMed] [Google Scholar]
  8. Baker E. N. Structure of actinidin: details of the polypeptide chain conformation and active site from an electron density map at 2-8 A resolution. J Mol Biol. 1977 Sep 25;115(3):263–277. doi: 10.1016/0022-2836(77)90154-1. [DOI] [PubMed] [Google Scholar]
  9. Baumgartner B., Chrispeels M. J. Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem. 1977 Jul 15;77(2):223–233. doi: 10.1111/j.1432-1033.1977.tb11661.x. [DOI] [PubMed] [Google Scholar]
  10. Bendall M. R., Lowe G. A spectroscopic investigation of S-trifluoroethylthiopapain. An investigation of the active site of papain. Eur J Biochem. 1976 Jun 1;65(2):493–502. doi: 10.1111/j.1432-1033.1976.tb10365.x. [DOI] [PubMed] [Google Scholar]
  11. Bendall M. R., Lowe G. Co-operative ionisation of aspartic-acid-158 and histidine-159 in papain. Evidence from 19F nuclear-magnetic-resonance and fluorescence spectroscopy. Eur J Biochem. 1976 Jun 1;65(2):481–491. doi: 10.1111/j.1432-1033.1976.tb10364.x. [DOI] [PubMed] [Google Scholar]
  12. Birktoft J. J., Blow D. M. Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. J Mol Biol. 1972 Jul 21;68(2):187–240. doi: 10.1016/0022-2836(72)90210-0. [DOI] [PubMed] [Google Scholar]
  13. Bizzozero S. A., Zweifel B. O. The importance of the conformation of the tetrahedral intermediate for the alpha-chymotrypsin-catalyzed hydrolysis of peptide substrates. FEBS Lett. 1975 Nov 1;59(1):105–108. doi: 10.1016/0014-5793(75)80351-6. [DOI] [PubMed] [Google Scholar]
  14. Blow D. M., Birktoft J. J., Hartley B. S. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature. 1969 Jan 25;221(5178):337–340. doi: 10.1038/221337a0. [DOI] [PubMed] [Google Scholar]
  15. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  16. Brayer G. D., Delbaere L. T., James M. N., Bauer C. A., Thompson R. C. Crystallographic and kinetic investigations of the covalent complex formed by a specific tetrapeptide aldehyde and the serine protease from Streptomyces griseus. Proc Natl Acad Sci U S A. 1979 Jan;76(1):96–100. doi: 10.1073/pnas.76.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Brockbank W. J., Lynn K. R. Purification and preliminary characterization of two asclepains from the latex of Asclepias syriaca L. (milkweed). Biochim Biophys Acta. 1979 May 23;578(1):13–22. doi: 10.1016/0005-2795(79)90107-7. [DOI] [PubMed] [Google Scholar]
  18. Brocklehurst K., Baines B. S., Malthouse J. P. Differences in the interaction of the catalytic groups of the active centres of actinidin and papain. Rapid purification of fully active actinidin by covalent chromatography and characterization of its active centre by use of two-protonic-state reactivity probes. Biochem J. 1981 Sep 1;197(3):739–746. doi: 10.1042/bj1970739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Brocklehurst K., Malthouse J. P. Evidence for a two-state transition in papain that may have no close analogue in ficin. Differences in the disposition of cationic sites and hydrophobic binding areas in the active centres of papain and ficin. Biochem J. 1980 Dec 1;191(3):707–718. doi: 10.1042/bj1910707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Brocklehurst K., Malthouse J. P., Shipton M. Evidence that binding to the s2-subsite of papain may be coupled with catalytically relevant structural change involving the cysteine-25-histidine-159 diad. Kinetics of the reaction of papain with a two-protonic-state reactivity probe containing a hydrophobic side chain. Biochem J. 1979 Nov 1;183(2):223–231. doi: 10.1042/bj1830223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brocklehurst K., Mushiri S. M., Patel G., Willenbrock F. Evidence for a close similarity in the catalytic sites of papain and ficin in near-neutral media despite differences in acidic and alkaline media. Kinetics of the reactions of papain and ficin with chloroacetate. Biochem J. 1982 Jan 1;201(1):101–104. doi: 10.1042/bj2010101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Brubacher L. J., Bender M. L. The preparation and properties of trans-cinnamoyl-papain. J Am Chem Soc. 1966 Dec 20;88(24):5871–5880. doi: 10.1021/ja00976a032. [DOI] [PubMed] [Google Scholar]
  23. Cohen G. H., Silverton E. W., Davies D. R. Refined crystal structure of gamma-chymotrypsin at 1.9 A resolution. Comparison with other pancreatic serine proteases. J Mol Biol. 1981 Jun 5;148(4):449–479. doi: 10.1016/0022-2836(81)90186-8. [DOI] [PubMed] [Google Scholar]
  24. Compton P., Fink A. L. The detection, accumulation and stabilization of a tetrahedral intermediate in trypsin catalysis. Biochem Biophys Res Commun. 1980 Mar 28;93(2):427–431. doi: 10.1016/0006-291x(80)91095-5. [DOI] [PubMed] [Google Scholar]
  25. Creighton D. J., Gessouroun M. S., Heapes J. M. Is the thiolate--imidazolium ion pair the catalytically important form of papain? FEBS Lett. 1980 Feb 11;110(2):319–322. doi: 10.1016/0014-5793(80)80101-3. [DOI] [PubMed] [Google Scholar]
  26. Creighton D. J., Schamp D. J. Solvent isotope effects on tautomerization equilibria of papain and model thiolamines. FEBS Lett. 1980 Feb 11;110(2):313–318. doi: 10.1016/0014-5793(80)80100-1. [DOI] [PubMed] [Google Scholar]
  27. Drenth J., Jansonius J. N., Koekoek R., Sluyterman L. A., Wolthers B. G. IV. Cysteine proteinases. The structure of the papain molecule. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):231–236. doi: 10.1098/rstb.1970.0022. [DOI] [PubMed] [Google Scholar]
  28. Drenth J., Jansonius J. N., Koekoek R., Swen H. M., Wolthers B. G. Structure of papain. Nature. 1968 Jun 8;218(5145):929–932. doi: 10.1038/218929a0. [DOI] [PubMed] [Google Scholar]
  29. Drenth J., Jansonius J. N., Koekoek R., Wolthers B. G. The structure of papain. Adv Protein Chem. 1971;25:79–115. doi: 10.1016/s0065-3233(08)60279-x. [DOI] [PubMed] [Google Scholar]
  30. Drenth J., Kalk K. H., Swen H. M. Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry. 1976 Aug 24;15(17):3731–3738. doi: 10.1021/bi00662a014. [DOI] [PubMed] [Google Scholar]
  31. Egan W., Shindo H., Cohen J. S. Carbon-13 nuclear magnetic resonance studies of proteins. Annu Rev Biophys Bioeng. 1977;6:383–417. doi: 10.1146/annurev.bb.06.060177.002123. [DOI] [PubMed] [Google Scholar]
  32. Fink A. L., Meehan P. Detection and accumulation of tetrahedral intermediates in elastase catalysis. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1566–1569. doi: 10.1073/pnas.76.4.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Frankfater A., Kuppy T. Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain. Biochemistry. 1981 Sep 15;20(19):5517–5524. doi: 10.1021/bi00522a026. [DOI] [PubMed] [Google Scholar]
  34. Halász P., Polgár L. Negatively charged reactants as probes in the study of the essential mercaptide-imidazolium ion-pair of thiolenzymes. Eur J Biochem. 1977 Oct 3;79(2):491–494. doi: 10.1111/j.1432-1033.1977.tb11832.x. [DOI] [PubMed] [Google Scholar]
  35. Henderson R. Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J Mol Biol. 1970 Dec 14;54(2):341–354. doi: 10.1016/0022-2836(70)90434-1. [DOI] [PubMed] [Google Scholar]
  36. Huber R., Kukla D., Bode W., Schwager P., Bartels K., Deisenhofer J., Steigemann W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. J Mol Biol. 1974 Oct 15;89(1):73–101. doi: 10.1016/0022-2836(74)90163-6. [DOI] [PubMed] [Google Scholar]
  37. Hunkapiller M. W., Forgac M. D., Richards J. H. Mechanism of action of serine proteases: tetrahedral intermediate and concerted proton transfer. Biochemistry. 1976 Dec 14;15(25):5581–5588. doi: 10.1021/bi00670a024. [DOI] [PubMed] [Google Scholar]
  38. Hunkapiller M. W., Smallcombe S. H., Whitaker D. R., Richards J. H. Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry. 1973 Nov 6;12(23):4732–4743. doi: 10.1021/bi00747a028. [DOI] [PubMed] [Google Scholar]
  39. Husain S. S., Lowe G. Evidence for histidine in the active site of papain. Biochem J. 1968 Aug;108(5):855–859. doi: 10.1042/bj1080855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Johnson F. A., Lewis S. D., Shafer J. A. Perturbations in the free energy and enthalpy of ionization of histidine-159 at the active site of papain as determined by fluorescence spectroscopy. Biochemistry. 1981 Jan 6;20(1):52–58. doi: 10.1021/bi00504a600. [DOI] [PubMed] [Google Scholar]
  41. Jordan F., Polgár L. Proton nuclear magnetic resonance evidence for the absence of a stable hydrogen bond between the active site aspartate and histidine residues of native subtilisins and for its presence in thiolsubtilisins. Biochemistry. 1981 Oct 27;20(22):6366–6370. doi: 10.1021/bi00525a013. [DOI] [PubMed] [Google Scholar]
  42. Keilová H., Turková J. Analogy between active sites of cathepsin B(1) and papain. FEBS Lett. 1970 Dec 11;11(4):287–288. doi: 10.1016/0014-5793(70)80550-6. [DOI] [PubMed] [Google Scholar]
  43. Koeppe R. E., 2nd, Stroud R. M. Mechanism of hydrolysis by serine proteases: direct determination of the pKa's of aspartyl-102 and aspartyl-194 in bovine trypsin using difference infrared spectroscopy. Biochemistry. 1976 Aug 10;15(16):3450–3458. doi: 10.1021/bi00661a009. [DOI] [PubMed] [Google Scholar]
  44. Komiyama M., Bender M. L. Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates? Proc Natl Acad Sci U S A. 1979 Feb;76(2):557–560. doi: 10.1073/pnas.76.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kossiakoff A. A., Spencer S. A. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin. Biochemistry. 1981 Oct 27;20(22):6462–6474. doi: 10.1021/bi00525a027. [DOI] [PubMed] [Google Scholar]
  46. Kossiakoff A. A., Spencer S. A. Neutron diffraction identifies His 57 as the catalytic base in trypsin. Nature. 1980 Nov 27;288(5789):414–416. doi: 10.1038/288414a0. [DOI] [PubMed] [Google Scholar]
  47. Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977;46:331–358. doi: 10.1146/annurev.bi.46.070177.001555. [DOI] [PubMed] [Google Scholar]
  48. LIU T. Y., ELLIOTT S. D. ACTIVATION OF STREPTOCOCCAL PROTEINASE AND ITS ZYMOGEN BY BACTERIAL CELL WALLS. Nature. 1965 Apr 3;206:33–34. doi: 10.1038/206033a0. [DOI] [PubMed] [Google Scholar]
  49. LOWE G., WILLIAMS A. DIRECT EVIDENCE FOR AN ACYLATED THIOL AS AN INTERMEDIATE IN PAPAIN- AND FICIN-CATALYSED HYDROLYSES. Biochem J. 1965 Jul;96:189–193. doi: 10.1042/bj0960189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lewis S. D., Johnson F. A., Ohno A. K., Shafer J. A. Dependence of the catalytic activity of papain on the ionization of two acidic groups. J Biol Chem. 1978 Jul 25;253(14):5080–5086. [PubMed] [Google Scholar]
  51. Lewis S. D., Johnson F. A., Shafer J. A. Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a his-159--Cys-25 ion pair and its possible role in catalysis. Biochemistry. 1981 Jan 6;20(1):48–51. doi: 10.1021/bi00504a009. [DOI] [PubMed] [Google Scholar]
  52. Lewis S. D., Johnson F. A., Shafer J. A. Potentiometric determination of ionizations at the active site of papain. Biochemistry. 1976 Nov 16;15(23):5009–5017. doi: 10.1021/bi00668a010. [DOI] [PubMed] [Google Scholar]
  53. Lowe G., Whitworth A. S. A kinetic and fluorimetric investigation of papain modified at tryptophan-69 and -177 by N-bromosuccinimide. Biochem J. 1974 Aug;141(2):503–515. doi: 10.1042/bj1410503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Lowe G., Yuthavong Y. Kinetic specificity in papain-catalysed hydrolyses. Biochem J. 1971 Aug;124(1):107–115. doi: 10.1042/bj1240107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Lynn K. R. A purification and some properties of two proteases from papaya latex. Biochim Biophys Acta. 1979 Aug 15;569(2):193–201. doi: 10.1016/0005-2744(79)90054-8. [DOI] [PubMed] [Google Scholar]
  56. Lynn K. R., Brockbank W. J., Clevette N. A. Multiple forms of the asclepains. Cysteinyl proteases from milkweed. Biochim Biophys Acta. 1980 Mar 14;612(1):119–125. doi: 10.1016/0005-2744(80)90284-3. [DOI] [PubMed] [Google Scholar]
  57. Löffler H. G., Schneider F. Chemical modification of one carboxyl-group of papain abolishes the catalytic activity of the enzyme. FEBS Lett. 1974 Sep 1;45(1):79–81. doi: 10.1016/0014-5793(74)80815-x. [DOI] [PubMed] [Google Scholar]
  58. MacClement B. A., Carriere R. G., Phelps D. J., Carey P. R. Evidence for two acyl group conformations in some furylacryloyl- and thienylacryloylchymotrypsins: resonance Raman studies of enzyme--substrate intermediates at pH 3.0. Biochemistry. 1981 Jun 9;20(12):3438–3447. doi: 10.1021/bi00515a021. [DOI] [PubMed] [Google Scholar]
  59. Markley J. L., Ibañez I. B. Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aalpha. Biochemistry. 1978 Oct 31;17(22):4627–4640. doi: 10.1021/bi00615a008. [DOI] [PubMed] [Google Scholar]
  60. Markley J. L., Travers F., Balny C. Lack of evidence for a tetrahedral intermediate in the hydrolysis of nitroanilide substrates by serine proteinases. Subzero-temperature stopped-flow experiments. Eur J Biochem. 1981 Dec;120(3):477–485. doi: 10.1111/j.1432-1033.1981.tb05726.x. [DOI] [PubMed] [Google Scholar]
  61. Matthews B. W., Sigler P. B., Henderson R., Blow D. M. Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature. 1967 May 13;214(5089):652–656. doi: 10.1038/214652a0. [DOI] [PubMed] [Google Scholar]
  62. Matthews D. A., Alden R. A., Birktoft J. J., Freer S. T., Kraut J. X-ray crystallographic study of boronic acid adducts with subtilisin BPN' (Novo). A model for the catalytic transition state. J Biol Chem. 1975 Sep 25;250(18):7120–7126. [PubMed] [Google Scholar]
  63. Matthews D. A., Alden R. A., Birktoft J. J., Freer T., Kraut J. Re-examination of the charge relay system in subtilisin comparison with other serine proteases. J Biol Chem. 1977 Dec 25;252(24):8875–8883. [PubMed] [Google Scholar]
  64. Neet K. E., Koshland D. E., Jr The conversion of serine at the active site of subtilisin to cysteine: a "chemical mutation". Proc Natl Acad Sci U S A. 1966 Nov;56(5):1606–1611. doi: 10.1073/pnas.56.5.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. O'Leary M. H., Kluetz M. D. Nitrogen isotope effects on the chymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophanamide. J Am Chem Soc. 1972 May 17;94(10):3585–3589. doi: 10.1021/ja00765a055. [DOI] [PubMed] [Google Scholar]
  66. Petkov D. D. Detection of a tetrahedral intermediate in the trypsin-catalysed hydrolysis of specific ring-activated anilides. Biochim Biophys Acta. 1978 Apr 12;523(2):538–541. doi: 10.1016/0005-2744(78)90057-8. [DOI] [PubMed] [Google Scholar]
  67. Petkov D., Christova E., Stoineva I. Catalysis and leaving group binding in anilide hydrolysis by chymotrypsin. Biochim Biophys Acta. 1978 Nov 10;527(1):131–141. doi: 10.1016/0005-2744(78)90262-0. [DOI] [PubMed] [Google Scholar]
  68. Polgár L., Asbóth B. On the stereochemistry of catalysis by serine proteases. J Theor Biol. 1974 Aug;46(2):543–558. doi: 10.1016/0022-5193(74)90014-9. [DOI] [PubMed] [Google Scholar]
  69. Polgár L., Bender M. L. The nature of general base-general acid catalysis in serine proteases. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1335–1342. doi: 10.1073/pnas.64.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Polgár L. Deuterium isotope effects on papain acylation. Evidence for lack of general base catalysis and for enzyme--leaving-group interaction. Eur J Biochem. 1979 Aug 1;98(2):369–374. doi: 10.1111/j.1432-1033.1979.tb13196.x. [DOI] [PubMed] [Google Scholar]
  71. Polgár L., Fejes J. Mechanism-controlled stereospecificity. Acylation of subtilisin with enantiomeric alkyl and nitrophenyl ester substrates. Eur J Biochem. 1979 Dec 17;102(2):531–536. doi: 10.1111/j.1432-1033.1979.tb04269.x. [DOI] [PubMed] [Google Scholar]
  72. Polgár L., Halász P. Evidence for multiple reactive forms of papain. Eur J Biochem. 1978 Aug 1;88(2):513–521. doi: 10.1111/j.1432-1033.1978.tb12477.x. [DOI] [PubMed] [Google Scholar]
  73. Polgár L. Isolation of highly active papaya peptidases A and B from commercial chymopapain. Biochim Biophys Acta. 1981 Apr 14;658(2):262–269. doi: 10.1016/0005-2744(81)90296-5. [DOI] [PubMed] [Google Scholar]
  74. Polgár L. Mercaptide-imidazolium ion-pair: the reactive nucleophile in papain catalysis. FEBS Lett. 1974 Oct 1;47(1):15–18. doi: 10.1016/0014-5793(74)80415-1. [DOI] [PubMed] [Google Scholar]
  75. Polgár L. On the role of hydrogen-bonding system in the catalysis by serine proteases. Acta Biochim Biophys Acad Sci Hung. 1972;7(1):29–34. [PubMed] [Google Scholar]
  76. Pollock E., Hogg J. L., Schowen R. L. One-proton catalysis in the deacetylation of acetyl- -chymotrypsin. J Am Chem Soc. 1973 Feb 7;95(3):968–969. doi: 10.1021/ja00784a080. [DOI] [PubMed] [Google Scholar]
  77. Richarz R., Tschesche H., Wüthrich K. Carbon-13 nuclear magnetic resonance studies of the selectively isotope-labeled reactive site peptide bond of the basic pancreatic trypsin inhibitor in the complexes with trypsin, trypsinogen, and anhydrotrypsin. Biochemistry. 1980 Dec 9;19(25):5711–5715. doi: 10.1021/bi00566a007. [DOI] [PubMed] [Google Scholar]
  78. Robertus J. D., Kraut J., Alden R. A., Birktoft J. J. Subtilisin; a stereochemical mechanism involving transition-state stabilization. Biochemistry. 1972 Nov 7;11(23):4293–4303. doi: 10.1021/bi00773a016. [DOI] [PubMed] [Google Scholar]
  79. Robillard G., Shulman R. G. High resolution nuclear magnetic resonance study of the histidine--aspartate hydrogen bond in chymotrypsin and chymotrypsinogen. J Mol Biol. 1972 Nov 14;71(2):507–511. doi: 10.1016/0022-2836(72)90366-x. [DOI] [PubMed] [Google Scholar]
  80. Rogers G. A., Bruice T. C. Synthesis and evaluation of a model for the so-called "charge-relay" system of the serine esterases. J Am Chem Soc. 1974 Apr 17;96(8):2473–2481. doi: 10.1021/ja00815a028. [DOI] [PubMed] [Google Scholar]
  81. Rühlmann A., Kukla D., Schwager P., Bartels K., Huber R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. J Mol Biol. 1973 Jul 5;77(3):417–436. doi: 10.1016/0022-2836(73)90448-8. [DOI] [PubMed] [Google Scholar]
  82. Shipton M., Brochlehurst K. Characterization of the papain active centre by using two-protonic-state electrophiles as reactivity probes. Evidence for nucleophilic reactivity in the un-interrupted cysteine-25-histidine-159 interactive system. Biochem J. 1978 May 1;171(2):385–401. doi: 10.1042/bj1710385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Shively J. E., Conrad H. E. Stoichiometry of the nitrous acid deaminative cleavage of model amino sugar glycosides and glycosaminoglycuronans. Biochemistry. 1970 Jan 6;9(1):33–43. doi: 10.1021/bi00803a005. [DOI] [PubMed] [Google Scholar]
  84. Sielecki A. R., Hendrickson W. A., Broughton C. G., Delbaere L. T., Brayer G. D., James M. N. Protein structure refinement: Streptomyces griseus serine protease A at 1.8 A resolution. J Mol Biol. 1979 Nov 15;134(4):781–804. doi: 10.1016/0022-2836(79)90486-8. [DOI] [PubMed] [Google Scholar]
  85. Sluyterman L. A., Wijdenes J. Benzoylamidoacetonitrile as an inhibitor of papain. Biochim Biophys Acta. 1973 Mar 15;302(1):95–101. doi: 10.1016/0005-2744(73)90012-0. [DOI] [PubMed] [Google Scholar]
  86. Sluyterman L. A., Wijdenes J. Proton equilibria in the binding of Zn2+ and of methylmercuric iodide to papain. Eur J Biochem. 1976 Dec 11;71(2):383–391. doi: 10.1111/j.1432-1033.1976.tb11125.x. [DOI] [PubMed] [Google Scholar]
  87. Sluyterman L. A., Wijdenes J., Voorn G. Dimerization of papain induced by mercuric chloride and a bifunctional organic mercurial. Eur J Biochem. 1977 Jul 1;77(1):107–111. doi: 10.1111/j.1432-1033.1977.tb11647.x. [DOI] [PubMed] [Google Scholar]
  88. Sluyterman L. A., de Graaf M. J. The fluorescence of papain. Biochim Biophys Acta. 1970 Mar 31;200(3):595–597. doi: 10.1016/0005-2795(70)90123-6. [DOI] [PubMed] [Google Scholar]
  89. Sweet R. M., Wright H. T., Janin J., Chothia C. H., Blow D. M. Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6-A resolution. Biochemistry. 1974 Sep 24;13(20):4212–4228. doi: 10.1021/bi00717a024. [DOI] [PubMed] [Google Scholar]
  90. Umeyama H., Nakagawa S., Kudo T. Role of Asp102 in the enzymatic reaction of bovine beta-trypsin. A molecular orbital study. J Mol Biol. 1981 Aug 15;150(3):409–421. doi: 10.1016/0022-2836(81)90556-8. [DOI] [PubMed] [Google Scholar]
  91. Warshel A. Energetics of enzyme catalysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5250–5254. doi: 10.1073/pnas.75.11.5250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Zannis V. I., Kirsch J. F. Effects of substituents on the rates of deacylation of substituted benzoyl papains. Role of a carboxylate residue in the catalytic mechanism. Biochemistry. 1978 Jun 27;17(13):2669–2674. doi: 10.1021/bi00606a033. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES