Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Nov 1;207(2):185–192. doi: 10.1042/bj2070185

Biological activities of bovine cardiac-muscle troponin C C-terminal peptide (residues 84-161).

N V Barskaya, N B Gusev
PMCID: PMC1153847  PMID: 7159379

Abstract

1. Bovine cardiac-muscle troponin C was digested at cysteine residues 35 and 84, and the C-terminal peptide (residues 84-161) was isolated. 2. The C-terminal peptide contains two Ca2+-binding sites. These sites bind Ca2+ with a binding constant of 2.0 X 10(8) M-1. In the presence of 2 mM-Mg2+ the binding constant for Ca2+ is decreased to 3.7 X 10(7) M-1. The corresponding constants for native troponin C are 5.9 X 10(7) M-1. and 2.9 X 10(7) M-1 respectively. 3. Electrophoretic mobility of the C-terminal peptide is increased in the presence of 0.1 mM-CaCl2 as compared with the mobility in the presence of 2mM-EDTA. The same phenomenon was observed when electrophoresis was performed in the presence of 6 M-urea or 0.1% sodium dodecyl sulphate. 4. When saturated with Ca2+, the C-terminal peptide forms complexes with bovine cardiac-muscle troponin I both in the absence and in the presence of 6 M-urea. This complex is dissociated on removal of Ca2+. 5. The data suggest that the C-terminal peptide of troponin C contains two Ca2+/Mg2+-binding sites and interacts with troponin I. Thus, despite the 30% difference in amino acid composition, the properties of bovine cardiac-muscle troponin C C-terminal peptide are similar to those of rabbit skeletal-muscle troponin C C-terminal peptide.

Full text

PDF
185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  2. Barskaia N. V., Gusev N. B. Troponin serdtsa byka: vydelenie i izuchenie kationsviazyvaiushchikh svoistv s pomoshch'iu fluorestsentnogo zonda dimetilaminoaftérodina. Biokhimiia. 1981 Mar;46(3):495–503. [PubMed] [Google Scholar]
  3. Burgess W. H., Jemiolo D. K., Kretsinger R. H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta. 1980 Jun 26;623(2):257–270. doi: 10.1016/0005-2795(80)90254-8. [DOI] [PubMed] [Google Scholar]
  4. Burtnick L. D., Kay C. M. The calcium-binding properties of bovine cardiac troponin C. FEBS Lett. 1977 Mar 15;75(1):105–110. doi: 10.1016/0014-5793(77)80063-x. [DOI] [PubMed] [Google Scholar]
  5. Degani Y., Patchornik A. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues. Biochemistry. 1974 Jan 1;13(1):1–11. doi: 10.1021/bi00698a001. [DOI] [PubMed] [Google Scholar]
  6. Dobrovol'skii A. B., Risnik V. V., Gusev N. B. Dal'neishee izuchenie svoistv troponin-T-kinazy: vozmozhnaia analogiia s kazeinkinazami G-tipa. Biokhimiia. 1981 Jun;46(6):1006–1014. [PubMed] [Google Scholar]
  7. Evans J. S., Levine B. A. Protein-protein interaction sites in the calcium modulated skeletal muscle troponin complex. J Inorg Biochem. 1980 Jun;12(3):227–239. doi: 10.1016/s0162-0134(00)80204-4. [DOI] [PubMed] [Google Scholar]
  8. Haiech J., Vallet B., Aquaron R., Demaille J. G. Ligand binding to macromolecules: determination of binding parameters by combined use of ligand buffers and flow dialysis; application to calcium-binding proteins. Anal Biochem. 1980 Jun;105(1):18–23. doi: 10.1016/0003-2697(80)90416-9. [DOI] [PubMed] [Google Scholar]
  9. Holroyde M. J., Robertson S. P., Johnson J. D., Solaro R. J., Potter J. D. The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1980 Dec 25;255(24):11688–11693. [PubMed] [Google Scholar]
  10. Jacobson G. R., Schaffer M. H., Stark G. R., Vanaman T. C. Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues. J Biol Chem. 1973 Oct 10;248(19):6583–6591. [PubMed] [Google Scholar]
  11. Kohama K. Divalent cation binding properties of slow skeletal muscle troponin in comparison with those of cardiac and fast skeletal muscle troponins. J Biochem. 1979 Sep;86(3):811–820. doi: 10.1093/oxfordjournals.jbchem.a132589. [DOI] [PubMed] [Google Scholar]
  12. Leavis P. C., Kraft E. L. Calcium binding to cardiac troponin C. Arch Biochem Biophys. 1978 Mar;186(2):411–415. doi: 10.1016/0003-9861(78)90453-8. [DOI] [PubMed] [Google Scholar]
  13. Leavis P. C., Rosenfeld S. S., Gergely J., Grabarek Z., Drabikowski W. Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T. J Biol Chem. 1978 Aug 10;253(15):5452–5459. [PubMed] [Google Scholar]
  14. Perry S. V., Cole H. A. Phosphorylation of troponin and the effects of interactions between the components of the complex. Biochem J. 1974 Sep;141(3):733–743. doi: 10.1042/bj1410733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perry S. V. The regulation of contractile activity in muscle. Biochem Soc Trans. 1979 Aug;7(4):593–617. doi: 10.1042/bst0070593. [DOI] [PubMed] [Google Scholar]
  16. Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
  17. Reid R. E., Hodges R. S. Co-operativity and calcium/magnesium binding to troponin C and muscle calcium binding parvalbumin: an hypothesis. J Theor Biol. 1980 Jun 7;84(3):401–444. doi: 10.1016/s0022-5193(80)80013-0. [DOI] [PubMed] [Google Scholar]
  18. Schaub M. C., Perry S. V. The relaxing protein system of striated muscle. Resolution of the troponin complex into inhibitory and calcium ion-sensitizing factors and their relationship to tropomyosin. Biochem J. 1969 Dec;115(5):993–1004. doi: 10.1042/bj1150993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schibeci A., Martonosi A. Detection of Ca2+-binding proteins on polyacrylamide gels by 45Ca autoradiography. Anal Biochem. 1980 May 15;104(2):335–342. doi: 10.1016/0003-2697(80)90084-6. [DOI] [PubMed] [Google Scholar]
  20. Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
  21. Stull J. T., Buss J. E. Calcium binding properties of beef cardiac troponin. J Biol Chem. 1978 Sep 10;253(17):5932–5938. [PubMed] [Google Scholar]
  22. Tsukui R., Ebashi S. Cardiac troponin. J Biochem. 1973 May;73(5):1119–1121. doi: 10.1093/oxfordjournals.jbchem.a130168. [DOI] [PubMed] [Google Scholar]
  23. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  24. Wilkinson J. M. The preparation and properties of the components of troponin B. Biochim Biophys Acta. 1974 Aug 8;359(2):379–388. doi: 10.1016/0005-2795(74)90238-4. [DOI] [PubMed] [Google Scholar]
  25. Wolff D. J., Poirier P. G., Brostrom C. O., Brostrom M. A. Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein. J Biol Chem. 1977 Jun 25;252(12):4108–4117. [PubMed] [Google Scholar]
  26. van Eerd J. P., Takahshi K. Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry. 1976 Mar 9;15(5):1171–1180. doi: 10.1021/bi00650a033. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES