Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Nov 1;207(2):193–200. doi: 10.1042/bj2070193

Chemical, photochemical and spectroscopic characterization of an alkaline proteinase from Bacillus subtilis variant DY.

N Genov, M Shopova, R Boteva, G Jori, F Ricchelli
PMCID: PMC1153848  PMID: 6818945

Abstract

Circular-dichroism and fluorescence studies indicate that the 5-dimethylaminonaphthalene-1-sulphonyl and phenylmethanesulphonyl derivatives of subtilisin DY have three-dimensional structure closely similar to that of native enzyme. The single tryptophan residue is largely accessible to the aqueous solvent, and is not directly involved in the enzyme-substrate interactions, since its photochemical modification causes only a partial inhibition of the enzyme activity. It appears very likely that the location of the single tryptophan residue in the three-dimensional structure of subtilisin DY is similar to that of the single tryptophan residue in subtilisin Carlsberg. Fluorescence-quenching experiments further indicate that the 14 tyrosine residues are also largely accessible to the aqueous solvent, and probably interact with hydrated peptide carbonyl groups. The charge environment for tryptophan and tyrosine residues in subtilisin DY, as deduced by quenching experiments with ionic species, is also discussed. In general, subtilisin DY displays strong similarities to subtilisin Carlsberg, as suggested by a comparative analysis of the amino acid composition and fluorescence properties.

Full text

PDF
193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEAVEN G. H., HOLIDAY E. R. Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem. 1952;7:319–386. doi: 10.1016/s0065-3233(08)60022-4. [DOI] [PubMed] [Google Scholar]
  2. Brown M. F., Omar S., Raubach R. A., Schleich T. Quenching of the tyrosyl and tryptophyl fluorescence of subtilisins Carlsberg and Novo by iodide. Biochemistry. 1977 Mar 8;16(5):987–992. doi: 10.1021/bi00624a028. [DOI] [PubMed] [Google Scholar]
  3. Brown M. F., Schleich T. Circular dichroism and gel filtration behavior of subtilisin enzymes in concentrated solutions of guanidine hydrochloride. Biochemistry. 1975 Jul 15;14(14):3069–3074. doi: 10.1021/bi00685a005. [DOI] [PubMed] [Google Scholar]
  4. Burstein E. A., Vedenkina N. S., Ivkova M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973 Oct;18(4):263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x. [DOI] [PubMed] [Google Scholar]
  5. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  6. Cozzani I., Jori G. Photo-oxidation of L-glutamate decarboxylase from Escherichia coli, sensitized by the coenzyme pyridoxal phosphate and by proflavin. Biochim Biophys Acta. 1980 May 29;623(1):84–88. doi: 10.1016/0005-2795(80)90010-0. [DOI] [PubMed] [Google Scholar]
  7. Eisinger J. Intramolecular energy transfer in adrenocorticotropin. Biochemistry. 1969 Oct;8(10):3902–3908. doi: 10.1021/bi00838a004. [DOI] [PubMed] [Google Scholar]
  8. Genov N., Jori G. Conformational studies on alkaline protease from Bacillus mesentericus. Int J Pept Protein Res. 1973;5(3):127–133. doi: 10.1111/j.1399-3011.1973.tb02328.x. [DOI] [PubMed] [Google Scholar]
  9. Genov N., Shopova M. Circular dichroism studies on native and phenylmethanesulfonyl-mesentericopeptidase. Denaturation in the presence of urea. Int J Pept Protein Res. 1978 Feb;11(2):185–189. doi: 10.1111/j.1399-3011.1978.tb02838.x. [DOI] [PubMed] [Google Scholar]
  10. Homer R. B., Allsopp S. R. An investigation of the electronic and steric environments of tyrosyl residues in ribonuclease A and Erwinia carotovora L-asparaginase through fluorescence quenching by caesium, iodide and phosphate ions. Biochim Biophys Acta. 1976 Jun 15;434(2):297–310. doi: 10.1016/0005-2795(76)90222-1. [DOI] [PubMed] [Google Scholar]
  11. Ivanov C. P., Vladovska-Yukhnovska Y. Thin-layer chromatographic separation of the diphenylindenonesulphonyl derivatives of amino acids. J Chromatogr. 1972 Aug 23;71(1):111–117. doi: 10.1016/s0021-9673(01)85694-6. [DOI] [PubMed] [Google Scholar]
  12. Kirby E. P., Steiner R. F. The tryptophan microenvironments in apomyoglobin. J Biol Chem. 1970 Dec 10;245(23):6300–6306. [PubMed] [Google Scholar]
  13. Kurihara M., Markland F. S., Smith E. L. Subtilisin Amylosacchariticus. 3. Isolation and sequence of the chymotryptic peptides and the complete amino acid sequence. J Biol Chem. 1972 Sep 10;247(17):5619–5631. [PubMed] [Google Scholar]
  14. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  15. Markland F. S., Smith E. L. Subtilisin BPN. VII. Isolation of cyanogen bromide peptides and the complete amino acid sequence. J Biol Chem. 1967 Nov 25;242(22):5198–5211. [PubMed] [Google Scholar]
  16. Ricchelli F., Jori G., Filippi B., Boteva R., Shopova M., Genov N. Effects of pH and urea on the conformational properties of subtilisin DY. Biochem J. 1982 Nov 1;207(2):201–205. doi: 10.1042/bj2070201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schlessinger J., Roche R. S., Steinberg I. Z. A study of subtilisin types Novo and Carlsberg by circular polarization of fluorescence. Biochemistry. 1975 Jan 28;14(2):255–262. doi: 10.1021/bi00673a010. [DOI] [PubMed] [Google Scholar]
  18. Smith E. L., DeLange R. J., Evans W. H., Landon M., Markland F. S. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J Biol Chem. 1968 May 10;243(9):2184–2191. [PubMed] [Google Scholar]
  19. TEALE F. W. The ultraviolet fluorescence of proteins in neutral solution. Biochem J. 1960 Aug;76:381–388. doi: 10.1042/bj0760381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vaz W. L., Schoellmann G. Specific fluorescent derivatives of macromolecules. Reaction of dansyl fluoride with serine proteinases. Biochim Biophys Acta. 1976 Jul 19;439(1):194–205. doi: 10.1016/0005-2795(76)90175-6. [DOI] [PubMed] [Google Scholar]
  21. Wright C. S., Alden R. A., Kraut J. Structure of subtilisin BPN' at 2.5 angström resolution. Nature. 1969 Jan 18;221(5177):235–242. doi: 10.1038/221235a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES