Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Nov 1;207(2):291–296. doi: 10.1042/bj2070291

Irreversible inhibition of fatty acid synthase from rat mammary gland with S-(4-bromo-2,3-dioxobutyl)-CoA. Effect on the partial reactions, protection by substrates and stoichiometry studies.

P R Clements, R E Barden, P M Ahmad, M B Chisner, F Ahmad
PMCID: PMC1153859  PMID: 7159383

Abstract

Fatty acid synthase from lactating rat mammary gland is rapidly and irreversibly inhibited by S-(4-bromo-2,3-dioxobutyl)-CoA. Of the seven partial reactions catalysed by the enzyme, the inhibition of the overall catalytic activity is closely paralleled only by inhibition of the beta-oxoacyl synthase (condensing) partial reaction. Three partial reactions. Beta-oxoacyl reductase, beta-hydroxyacyl dehydratase and enoyl reductase, are inhibited to a modest degree. The three partial reactions known to involve an acyl-CoA/CoA-binding site, acetyl acyltransferase, malonyl acyltransferase and palmitoyl thioesterase, are not inhibited by S-(4-bromo-2,3-dioxobutyl)-CoA. The modification process does not cause the enzyme to dissociate into catalytically incompetent monomers. Stoichiometric studies suggest that approx. 6 mol of reagent are incorporated per mol of totally inhibited enzyme (dimer). The formation of acylated enzyme from either acetyl-CoA or malonyl-CoA protects the enzyme equally well against S-(4-bromo-2,3-dioxobutyl)-CoA. Also, pretreatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid), a thiol-specific reagent reported to block essential thiol groups in the condensing partial reaction, protects against inhibition by the reagent. On the other hand, the presence of up to 770 microM-S-acetonyl-CoA or dethio-CoA does not protect the enzyme from irreversible inhibition. Together, the results suggest that the primary inhibitory process is a bimolecular reaction resulting in alkylation of essential thiol groups in the condensing partial reaction: this process does not require the obligatory formation of a Michaelis-Menten complex of enzyme and reagent before the alkylation reaction.

Full text

PDF
291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad P. M., Feltman D. S., Ahmad F. Rat mammary-gland fatty acid synthase. A simple purification procedure and stoicheiometry of CoA ester binding. Biochem J. 1982 Apr 1;203(1):45–50. doi: 10.1042/bj2030045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barden R. E., Owens M. S., Clements P. R. S-(4-Bromo-2,3-dioxobutyl)-CoA: an affinity label designed for acyl-CoA sites. Methods Enzymol. 1981;72:580–583. doi: 10.1016/s0076-6879(81)72046-9. [DOI] [PubMed] [Google Scholar]
  3. Bedord C. J., Kolattukudy P. E., Rogers L. Isolation and characterization of a tryptic fragment containing the thioesterase segment of fatty acid synthetase from the uropygial gland of goose. Arch Biochem Biophys. 1978 Feb;186(1):139–151. doi: 10.1016/0003-9861(78)90473-3. [DOI] [PubMed] [Google Scholar]
  4. Bloch K., Vance D. Control mechanisms in the synthesis of saturated fatty acids. Annu Rev Biochem. 1977;46:263–298. doi: 10.1146/annurev.bi.46.070177.001403. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Clements P. R., Barden R. E., Ahmad P. M., Ahmad F. Affinity labeling of fatty acid synthetase from lactating rat mammary gland with S-(4-bromo-2,3-dioxobutyl)-CoA: evidence for a "half-of-the-sites" catalytic mechanism. Biochem Biophys Res Commun. 1979 Jan 30;86(2):278–284. doi: 10.1016/0006-291x(79)90863-5. [DOI] [PubMed] [Google Scholar]
  7. Dileepan K. N., Lin C. Y., Smith S. Release of two thioesterase domains from fatty acid synthetase by limited digestion with trypsin. Biochem J. 1978 Oct 1;175(1):199–206. doi: 10.1042/bj1750199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dutler H., Coon M. J., Kull A., Vogel H., Waldvogel G., Prelog V. Fatty acid synthetase from pig liver. 1. Isolation of the enzyme complex and characterization of the component with oxidoreductase activity for alicyclic ketones. Eur J Biochem. 1971 Sep 24;22(2):203–212. doi: 10.1111/j.1432-1033.1971.tb01533.x. [DOI] [PubMed] [Google Scholar]
  9. Grinnell F. L., Nishimura J. S. The mechanism of the succinic thiokinase reaction. Effector role of desulfo-coenzyme A in succinyl phosphate formation. Biochemistry. 1969 Feb;8(2):568–574. doi: 10.1021/bi00830a016. [DOI] [PubMed] [Google Scholar]
  10. Kass L. R., Brock D. J., Bloch K. Beta-hydroxydecanoyl thioester dehydrase. I. Purification and properties. J Biol Chem. 1967 Oct 10;242(19):4418–4431. [PubMed] [Google Scholar]
  11. Katiyar S. S., Pan D., Porter J. W. Role of cysteine and 4'-phosphopantetheine in the inactivation of pigeon liver fatty acid synthetase by S-(4-bromo-2,3-dioxobutyl)-coenzyme A. Biochem Biophys Res Commun. 1982 Jan 29;104(2):517–522. doi: 10.1016/0006-291x(82)90667-2. [DOI] [PubMed] [Google Scholar]
  12. Kresze G. B., Steber L., Oesterhelt D., Lynen F. Reaction of yeast fatty acid synthetase with iodoacetamide. 3. Malonyl-coenzyme A decarboxylase as product of the reaction of fatty acid synthetase with iodoacetamide. Eur J Biochem. 1977 Sep 15;79(1):191–199. doi: 10.1111/j.1432-1033.1977.tb11797.x. [DOI] [PubMed] [Google Scholar]
  13. Kumar S. Fatty acid synthetase complex. Selective inactivation by phenylmethylsulphonyl fluoride. Biochem Biophys Res Commun. 1973 Jul 2;53(1):334–341. doi: 10.1016/0006-291x(73)91438-1. [DOI] [PubMed] [Google Scholar]
  14. Libertini L. J., Smith S. Synthesis of long chain acyl-enzyme thioesters by modified fatty acid synthetases and their hydrolysis by a mammary gland thioesterase. Arch Biochem Biophys. 1979 Jan;192(1):47–60. doi: 10.1016/0003-9861(79)90070-5. [DOI] [PubMed] [Google Scholar]
  15. Lin C. Y., Smith S. Properties of the thioesterase component obtained by limited trypsinization of the fatty acid synthetase multienzyme complex. J Biol Chem. 1978 Mar 25;253(6):1954–1962. [PubMed] [Google Scholar]
  16. Muesing R. A., Porter J. W. Fatty acid synthase from pigeon liver. Methods Enzymol. 1975;35:45–59. doi: 10.1016/0076-6879(75)35137-9. [DOI] [PubMed] [Google Scholar]
  17. Oesterhelt D., Bauer H., Kresze G. B., Steber L., Lynen F. Reaction of yeast fatty acid synthetase with iodoacetamide. 1. Kinetics of inactivation and extent of carboxamidomethylation. Eur J Biochem. 1977 Sep 15;79(1):173–180. doi: 10.1111/j.1432-1033.1977.tb11795.x. [DOI] [PubMed] [Google Scholar]
  18. Owens M. S., Barden R. E. S-(4-Bromo-2,3-dioxobutyl)CoA: an affinity label for certain enzymes than bind acetyl-CoA. Arch Biochem Biophys. 1978 Apr 30;187(2):299–306. doi: 10.1016/0003-9861(78)90038-3. [DOI] [PubMed] [Google Scholar]
  19. Rubenstein P., Dryer R. S-acetonyl-CoA. A nonreactive analog of acetyl-CoA. J Biol Chem. 1980 Aug 25;255(16):7858–7862. [PubMed] [Google Scholar]
  20. Smith S., Abraham S. Fatty acid synthase from lactating rat mammary gland. Methods Enzymol. 1975;35:65–74. doi: 10.1016/0076-6879(75)35139-2. [DOI] [PubMed] [Google Scholar]
  21. Smith S., Abraham S. Fatty acid synthetase from lactating rat mammary gland. 3. Dissociation and reassociation. J Biol Chem. 1971 Nov;246(21):6428–6435. [PubMed] [Google Scholar]
  22. Smith S., Agradi E., Libertini L., Dileepan K. N. Specific release of the thioesterase component of the fatty acid synthetase multienzyme complex by limited trypsinization. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1184–1188. doi: 10.1073/pnas.73.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith S. Mechanism of chain length determination in biosynthesis of milk fatty acids. J Dairy Sci. 1980 Feb;63(2):337–352. doi: 10.3168/jds.S0022-0302(80)82935-3. [DOI] [PubMed] [Google Scholar]
  24. Stoops J. K., Wakil S. J. The reaction of chicken liver fatty acid synthetase with 5,5'-dithiobis(2-nitrobenzoic acid). Biochem Biophys Res Commun. 1982 Feb 11;104(3):1018–1024. doi: 10.1016/0006-291x(82)91351-1. [DOI] [PubMed] [Google Scholar]
  25. Stoops J. K., Wakil S. J. The yeast fatty acid synthetase. Structure-function relationship and the role of the active cysteine-SH and pantetheine-SH. J Biol Chem. 1981 Aug 25;256(16):8364–8370. [PubMed] [Google Scholar]
  26. Wieland F., Renner L., Verfürth C., Lynen F. Studies on the multi-enzyme complex of yeast fatty-acid synthetase. Reversible dissociation and isolation of two polypeptide chains. Eur J Biochem. 1979 Feb 15;94(1):189–197. doi: 10.1111/j.1432-1033.1979.tb12885.x. [DOI] [PubMed] [Google Scholar]
  27. Wold F. Affinity labeling--an overview. Methods Enzymol. 1977;46:3–14. doi: 10.1016/s0076-6879(77)46005-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES