Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Nov 1;207(2):323–329. doi: 10.1042/bj2070323

Role of the N-terminus of glutathione in the action of yeast glyoxalase I.

K T Douglas, A Al-Timari, C D'Silva, D I Gohel
PMCID: PMC1153863  PMID: 7159385

Abstract

A number of S-substituted glutathiones and the corresponding N-substituted S-substituted analogues have been found to be linear competitive inhibitors of yeast glyoxalase I at 26 degrees C over the pH range 4.6-8.5. N-Acetylation of S-(p-bromobenzyl)glutathione weakens binding by 13.7-fold. N-benzoylation by 25.6-fold, N-trimethylacetylation by 53.3-fold and N-carbobenzoxylation by 7.8-fold, indicating a minor steric component in the binding at the N-site. The Ki-weakening effect of N-substitution of glutathione depends on the chemical nature of the S-substituent, indicating flexibility in the glutathione and/or glyoxalase I contributions to the binding site for glutathione derivatives. The effect of N-acylation on Ki is in accord with a charge interaction of the free enzyme with S-blocked glutathione in a region of reasonably high dielectric constant. There is a slight pH effect on Ki for S-(m-trifluoromethylbenzyl)glutathione but not for S-(p-bromobenzyl)glutathione.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aprison M. H., Hingtgen J. N., McBride W. J. Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior. Fed Proc. 1975 Aug;34(9):1813–1822. [PubMed] [Google Scholar]
  2. Aronsson A. C., Mannervik B. Characterization of glyoxalase I purified from pig erythrocytes by affinity chromatography. Biochem J. 1977 Sep 1;165(3):503–509. doi: 10.1042/bj1650503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bártfai T., Ekwall K., Mannervik B. Discrimination between steady-state kinetic models of the Mechanism of action of yeast glyoxalase I. Biochemistry. 1973 Jan 30;12(3):387–391. doi: 10.1021/bi00727a004. [DOI] [PubMed] [Google Scholar]
  4. Chari R. V., Kozarich J. W. Deuterium isotope effects on the product partitioning of fluoromethylglyoxal by glyoxalase I. Proof of a proton transfer mechanism. J Biol Chem. 1981 Oct 10;256(19):9785–9788. [PubMed] [Google Scholar]
  5. ELLIOTT W. H. A new threonine metabolite. Biochim Biophys Acta. 1958 Aug;29(2):446–447. doi: 10.1016/0006-3002(58)90215-4. [DOI] [PubMed] [Google Scholar]
  6. Ekwall K., Mannervik B. The stereochemical configuration of the lactoyl group of S-lactoylglutathionine formed by the action of glyoxalase I from porcine erythrocytes and yeast. Biochim Biophys Acta. 1973 Feb 28;297(2):297–299. doi: 10.1016/0304-4165(73)90076-7. [DOI] [PubMed] [Google Scholar]
  7. Gillespie E. Concanavalin A increases glyoxalase enzyme activities in polymorphonuclear leukocytes and lymphocytes. J Immunol. 1978 Sep;121(3):923–925. [PubMed] [Google Scholar]
  8. Gillespie E. Effects of S-lactoylglutathione and inhibitors of glyoxalase I on histamine release from human leukocytes. Nature. 1979 Jan 11;277(5692):135–137. doi: 10.1038/277135a0. [DOI] [PubMed] [Google Scholar]
  9. Hall S. S., Doweyko A. M., Jordan F. Glyoxalase I enzyme studies. 2. Nuclear magnetic resonance evidence for an enediol-proton transfer mechanism. J Am Chem Soc. 1976 Nov 10;98(23):7460–7461. doi: 10.1021/ja00439a077. [DOI] [PubMed] [Google Scholar]
  10. Iio M., Okabe K., Omura H. Effect of reductones on glyoxalase I1. J Nutr Sci Vitaminol (Tokyo) 1976;22(1):53–61. doi: 10.3177/jnsv.22.53. [DOI] [PubMed] [Google Scholar]
  11. Jerzykowski T., Winter R., Matuszewski W. gamma,delta-Dioxovalerate as a substrate for the glyoxalase enzyme system. Biochem J. 1973 Dec;135(4):713–719. doi: 10.1042/bj1350713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kester M. V., Reese J. A., Norton S. J. Mouse liver glyoxalase I inhibition by S-substituted glutathiones. J Med Chem. 1974 Apr;17(4):413–416. doi: 10.1021/jm00250a009. [DOI] [PubMed] [Google Scholar]
  13. Lyon P. A., Vince R. Synthesis and kinetic evaluation of S- and N-substituted cysteinylglycines as inhibitors of glyoxalase I. J Med Chem. 1977 Jan;20(1):77–88. doi: 10.1021/jm00211a015. [DOI] [PubMed] [Google Scholar]
  14. Marmstal E., Mannervik B. Binding of the competitive inhibitor S-(p-bromobenzyl)-glutathione to glyoxalase I from yeast. FEBS Lett. 1979 Jun 1;102(1):162–164. doi: 10.1016/0014-5793(79)80950-3. [DOI] [PubMed] [Google Scholar]
  15. Marmstål E., Aronsson A. C., Mannervik B. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources. Biochem J. 1979 Oct 1;183(1):23–30. doi: 10.1042/bj1830023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RACKER E. The mechanism of action of glyoxalase. J Biol Chem. 1951 Jun;190(2):685–696. [PubMed] [Google Scholar]
  17. ROSE I. A. Mechanism of the action of glyoxalase I. Biochim Biophys Acta. 1957 Jul;25(1):214–215. doi: 10.1016/0006-3002(57)90453-5. [DOI] [PubMed] [Google Scholar]
  18. Seddon A. P., Douglas K. T. A photoaffinity label derivative of glutathione and its inhibition of glyoxalase I. FEBS Lett. 1980 Feb 11;110(2):262–264. doi: 10.1016/0014-5793(80)80087-1. [DOI] [PubMed] [Google Scholar]
  19. Szent-Györgyi A. Bioelectronics. Intermolecular electron transfer may play a major role in biological regulation, defense, and cancer. Science. 1968 Sep 6;161(3845):988–990. doi: 10.1126/science.161.3845.988. [DOI] [PubMed] [Google Scholar]
  20. Takeuchi T., Chimura H., Hamada M., Umezawa H., Yoshioka O. A glyoxalase I inhibitor of a new structural type produced by Streptomyces. J Antibiot (Tokyo) 1975 Oct;28(10):737–742. doi: 10.7164/antibiotics.28.737. [DOI] [PubMed] [Google Scholar]
  21. URATA G., GRANICK S. Biosynthesis of alpha-aminoketones and the metabolism of aminoacetone. J Biol Chem. 1963 Feb;238:811–820. [PubMed] [Google Scholar]
  22. Vander Jagt D. L., Han L. P. Deuterium isotope effects and chemically modified coenzymes as mechanism probes of yeast glyoxalase-I. Biochemistry. 1973 Dec 4;12(25):5161–5167. doi: 10.1021/bi00749a022. [DOI] [PubMed] [Google Scholar]
  23. Vince R., Daluge S., Wadd W. B. Studies on the inhibition of glyoxalase I by S-substituted glutathiones. J Med Chem. 1971 May;14(5):402–404. doi: 10.1021/jm00287a006. [DOI] [PubMed] [Google Scholar]
  24. Vince R., Wolf M., Sanford C. Glutaryl-S-(p-bromobenzyl)-L-cysteinylglycine. A metabolically stable inhibitor of glyoxalase I. J Med Chem. 1973 Aug;16(8):951–953. doi: 10.1021/jm00266a022. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES