Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Nov 1;207(2):341–346. doi: 10.1042/bj2070341

Involvement of a single thiol group in the conversion of the NAD+-dependent activity of rat liver xanthine oxidoreductase to the O2-dependent activity.

Z W Kamiński, M M Jezewska
PMCID: PMC1153866  PMID: 6961918

Abstract

The effects of 2-iodosobenzoic acid, 4-chloromercuribenzoate, 5,5'-dithiobis-(2-nitrobenzoic acid) and tetraethylthioperoxydicarbonic diamide (disulphiram) on the NAD+-dependent activity of xanthine oxidoreductase from rat liver were investigated. Only disulphiram converted the NAD+-dependent activity into the O2-dependent activity quantitatively, without changing the xanthine hydroxylation rate. The modification process was a first-order reaction with respect to time (min) and disulphiram concentration (microM). The kinetic data showed that modification of single thiol group is sufficient for loss of the enzymic activity towards NAD+ as electron acceptor. The complete protection afforded by NAD+ against the action of disulphiram suggests that the essential thiol group may be involved in binding of NAD+ to the xanthine oxidoreductase molecule.

Full text

PDF
341

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battelli M. G., Lorenzoni E., Stripe F. Milk xanthine oxidase type D (dehydrogenase) and type O (oxidase). Purification, interconversion and some properties. Biochem J. 1973 Feb;131(2):191–198. doi: 10.1042/bj1310191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cavallini D., De Marco C., Duprè S., Rotilio G. The copper catalyzed oxidation of cysteine to cystine. Arch Biochem Biophys. 1969 Mar;130(1):354–361. doi: 10.1016/0003-9861(69)90044-7. [DOI] [PubMed] [Google Scholar]
  3. Corte E. D., Stirpe F. The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem J. 1972 Feb;126(3):739–745. doi: 10.1042/bj1260739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coughlan M. P., Johnson J. L., Rajagopalan K. V. Mechanisms of inactivation of molybdoenzymes by cyanide. J Biol Chem. 1980 Apr 10;255(7):2694–2699. [PubMed] [Google Scholar]
  5. Coughlan M. P. On the origin of the cyanolysable sulphur in molybdenum iron/sulphur flavin hydroxylases. FEBS Lett. 1977 Sep 1;81(1):1–6. doi: 10.1016/0014-5793(77)80914-9. [DOI] [PubMed] [Google Scholar]
  6. Faiman M. D., Dodd D. E., Minor S. S., Hanzlik R. Radioactive and nonradioactive methods for the in vivo determination of disulfiram, diethyldithiocarbamate, and diethyldithiocarbamate-methyl ester. Alcohol Clin Exp Res. 1978 Oct;2(4):366–369. doi: 10.1111/j.1530-0277.1978.tb04745.x. [DOI] [PubMed] [Google Scholar]
  7. Haley T. J. Disulfiram (tetraethylthioperoxydicarbonic diamide): a reappraisal of its toxicity and therapeutic application. Drug Metab Rev. 1979;9(2):319–335. doi: 10.3109/03602537908993897. [DOI] [PubMed] [Google Scholar]
  8. Horiike K., McCormick D. B. Correlations between biological activity and the number of functional groups chemically modified. J Theor Biol. 1979 Aug 7;79(3):403–414. doi: 10.1016/0022-5193(79)90355-2. [DOI] [PubMed] [Google Scholar]
  9. Kamiński Z. W., Jezewska M. M. Effect of NADH on hypoxanthine hydroxylation by native NAD+-dependent xanthine oxidoreductase of rat liver, and the possible biological role of this effect. Biochem J. 1981 Dec 15;200(3):597–603. doi: 10.1042/bj2000597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kamiński Z. W., Jezewska M. M. Intermediate dehydrogenase-oxidase form of xanthine oxidoreductase in rat liver. Biochem J. 1979 Jul 1;181(1):177–182. doi: 10.1042/bj1810177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitson T. M. Studies on the interaction between disulfiram and sheep liver cytoplasmic aldehyde dehydrogenase. Biochem J. 1978 Oct 1;175(1):83–90. doi: 10.1042/bj1750083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kitson T. M. The effect of some analogues of disulfiram on the aldehyde dehydrogenases of sheep liver. Biochem J. 1976 May 1;155(2):445–448. doi: 10.1042/bj1550445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LEVY H. M., LEBER P. D., RYAN E. M. INACTIVATION OF MYOSIN BY 2,4-DINITROPHENOL AND PROTECTION BY ADENOSINE TRIPHOSPHATE AND OTHER PHOSPHATE COMPOUNDS. J Biol Chem. 1963 Nov;238:3654–3659. [PubMed] [Google Scholar]
  14. Neims A. H., Coffey D. S., Hellerman L. A sensitive radioassay for sulfhydryl groups with tetraethylthiuram disulfide. J Biol Chem. 1966 Jul 10;241(13):3036–3040. [PubMed] [Google Scholar]
  15. Stirpe F., Della Corte E. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem. 1969 Jul 25;244(14):3855–3863. [PubMed] [Google Scholar]
  16. TAKAGI T., ISEMURA T. ACCELERATING EFFECT OF COPPER ION ON THE REACTIVATION OF REDUCED TAKA-AMYLASE A THROUGH CATALYSIS OF THE OXIDATION OF SULFHYDRYL GROUPS. J Biochem. 1964 Oct;56:344–350. doi: 10.1093/oxfordjournals.jbchem.a127999. [DOI] [PubMed] [Google Scholar]
  17. TSOU C. L. Relation between modification of functional groups of proteins and their biological activity. I.A graphical method for the determination of the number and type of essential groups. Sci Sin. 1962 Nov;11:1535–1558. [PubMed] [Google Scholar]
  18. Tischler M. E., Friedrichs D., Coll K., Williamson J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977 Nov;184(1):222–236. doi: 10.1016/0003-9861(77)90346-0. [DOI] [PubMed] [Google Scholar]
  19. Waud W. R., Rajagopalan K. V. The mechanism of conversion of rat liver xanthine dehydrogenase from an NAD+-dependent form (type D) to an O2-dependent form (type O). Arch Biochem Biophys. 1976 Feb;172(2):365–379. doi: 10.1016/0003-9861(76)90088-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES