Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Nov 1;207(2):357–362. doi: 10.1042/bj2070357

Steady-state kinetic studies of the inhibitory action of Zn2+ on ribonuclease T1 catalysis.

M Itaya, Y Inoue
PMCID: PMC1153868  PMID: 6818948

Abstract

The kinetic mechanism of specific inhibition by Zn2+ of ribonuclease T1 catalysis was studied by steady-state kinetic analysis of transphosphorylation of dinucleotides, GpCp(3'), GpUp(2') and GpUp(3'), and dinucleoside monophosphates, GpC and GpU. The inhibition was not simply competitive, non-competitive or uncompetitive, but the kinetic data were compatible with a mechanism of 'fully mixed inhibition' in which a fully non-competitive action was associated with a partially competitive action. Apparent equilibrium quotients involved in this model of inhibition were determined for the dinucleotide substrates, and we found that binding of either of Zn2+ and substrate was facilitated when the other was bound. The location of Zn2+ was suggested to be near His-40 and/or His-92 of the ribonuclease T1 molecule.

Full text

PDF
357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arata Y., Kimura S., Matsuo H., Narita K. Proton magnetic resonance studies of ribonuclease T1. Assignment of histidine-40 peak and analysis of the active site. Biochem Biophys Res Commun. 1976 Nov 8;73(1):133–140. doi: 10.1016/0006-291x(76)90507-6. [DOI] [PubMed] [Google Scholar]
  2. Breslow E., Girotti A. W. The interaction of ribonuclease with metal ions. I. Studies of cupric and zinc ions and the effect of cytidylic acid. J Biol Chem. 1966 Dec 10;241(23):5651–5660. [PubMed] [Google Scholar]
  3. Egami F., Takahashi K., Uchida T. Ribonucleases in taka-diastase: properties, chemical nature, and applications. Prog Nucleic Acid Res Mol Biol. 1964;3:59–101. doi: 10.1016/s0079-6603(08)60739-4. [DOI] [PubMed] [Google Scholar]
  4. Eichhorn G. L., Clark P., Tarien E. The interaction of metal ions with polynucleotides and related compounds. 13. The effect of metal ions on the enzymatic degradation of ribonucleic acid by bovine pancreatic ribonuclease and of deoxyribonucleic acid by bovine pancreatic deoxyribonuclease I. J Biol Chem. 1969 Feb 10;244(3):937–942. [PubMed] [Google Scholar]
  5. Fan S., Bersohn R. Interaction of transition metal ions with ribonuclease A. II. The selective effects of Mn2+, Zn2+, Cd2+ and Hg2+ on the histidine magnetic resonance. Biochim Biophys Acta. 1975 Aug 26;397(2):405–411. doi: 10.1016/0005-2744(75)90129-1. [DOI] [PubMed] [Google Scholar]
  6. Girotti A. W., Breslow E. The interaction of ribonuclease with metal ions. II. Gel filtration studies of cupric ion-ribonuclease interactions. J Biol Chem. 1968 Jan 10;243(1):216–218. [PubMed] [Google Scholar]
  7. Ikenaga H., Inoue Y. Metal(II) ion catalyzed transphosphorylation of four homodinucleotides and five pairs of dinucleotide sequence isomers. Biochemistry. 1974 Jan 29;13(3):577–582. doi: 10.1021/bi00700a027. [DOI] [PubMed] [Google Scholar]
  8. Morrill G. A., Reiss M. M. Inhibition of enzymatic degradation of RNA by bound calcium and magnesium. Biochim Biophys Acta. 1969 Mar 18;179(1):43–49. doi: 10.1016/0005-2787(69)90120-8. [DOI] [PubMed] [Google Scholar]
  9. Puistola U., Turpeenniemi-Hujanen T. M., Myllylä R., Kivirikko K. I. Studies on the lysyl hydroxylase reaction. II. Inhibition kinetics and the reaction mechanism. Biochim Biophys Acta. 1980 Jan 11;611(1):51–60. doi: 10.1016/0005-2744(80)90041-8. [DOI] [PubMed] [Google Scholar]
  10. Rowe M. J., Smith M. A. Synthesis of 3'-5' dinucleotides with RNase T-1. Biochem Biophys Res Commun. 1970 Feb 6;38(3):393–399. doi: 10.1016/0006-291x(70)90726-6. [DOI] [PubMed] [Google Scholar]
  11. Secemski I. I., Lienhard G. E. The effect of gadolinium ion on the binding of inhibitors and substrates to lysozyme. J Biol Chem. 1974 May 10;249(9):2932–2938. [PubMed] [Google Scholar]
  12. Splittgerber A. G., Tappel A. L. Inhibition of glutathione peroxidase by cadmium and other metal ions. Arch Biochem Biophys. 1979 Oct 15;197(2):534–542. doi: 10.1016/0003-9861(79)90277-7. [DOI] [PubMed] [Google Scholar]
  13. Takahashi K. The amino acid sequence of ribonuclease T-1. J Biol Chem. 1965 Oct;240(10):4117–4119. [PubMed] [Google Scholar]
  14. Takahashi K. The structure and function of ribonuclease T1. 18. Gel filtration studies on the interaction of ribonuclease T1 with substrate analogs. J Biochem. 1972 Dec;72(6):1469–1481. doi: 10.1093/oxfordjournals.jbchem.a130039. [DOI] [PubMed] [Google Scholar]
  15. Takahashi T., Irie M., Ukita T. Effect of divalent cations on bovine pancreatic ribonuclease. J Biochem. 1967 Jun;61(6):669–678. doi: 10.1093/oxfordjournals.jbchem.a128601. [DOI] [PubMed] [Google Scholar]
  16. Taniuchi H., Bohnert J. L. The mechanism of stabilization of the structure of nuclease-T by binding of ligands. J Biol Chem. 1975 Mar 25;250(6):2388–2394. [PubMed] [Google Scholar]
  17. Tuderman L., Myllylä R., Kivirikko K. I. Mechanism of the prolyl hydroxylase reaction. 1. Role of co-substrates. Eur J Biochem. 1977 Nov 1;80(2):341–348. doi: 10.1111/j.1432-1033.1977.tb11888.x. [DOI] [PubMed] [Google Scholar]
  18. Vaisius A. C., Horgen P. A. The effects of several divalent cations on the activation or inhibition of RNA polymerases II. Arch Biochem Biophys. 1980 Sep;203(2):553–564. doi: 10.1016/0003-9861(80)90212-x. [DOI] [PubMed] [Google Scholar]
  19. Yasuda T., Inoue Y. Studies of catalysis by ribonuclease U2. Steady-state kinetics for transphosphorylation of oligonucleotide and synthetic substrates. Biochemistry. 1982 Jan 19;21(2):364–369. doi: 10.1021/bi00531a025. [DOI] [PubMed] [Google Scholar]
  20. Yasuda Y., Inoue Y. Evidence for the presence of two kinetically distinct active forms of ribonuclease T2. The pH dependence of the steady-state kinetic parameter, kcat, for transphosphorylation of both a natural and a synthetic substrate. Eur J Biochem. 1981 Feb;114(2):229–234. doi: 10.1111/j.1432-1033.1981.tb05140.x. [DOI] [PubMed] [Google Scholar]
  21. Zabinski M., Walz F. G., Jr Subsites and catalytic mechanism of ribonuclease T: kinetic studies using GpC and GpU as substrates. Arch Biochem Biophys. 1976 Aug;175(2):558–564. doi: 10.1016/0003-9861(76)90545-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES