Abstract
Maintenance of fibroblasts in 0.5% serum results in viable but non-proliferative cells that may be analogous to fibroblasts in vivo. The synthesis of proteoglycans by human embryo lung fibroblasts in Eagle's minimal essential medium with 0.5% newborn-bovine serum or with 10% serum has been compared. A similar amount of [35S]sulphate-labelled glycosaminoglycan per cell was secreted by fibroblasts in 10% or 0.5% serum. 35SO42-incorporation into sulphated glycosaminoglycans was enhanced in 0.5% serum when expressed per mg of cell protein, but [3H]glucosamine incorporation was decreased. The charge density of these glycosaminoglycans was not changed as determined by ion-exchange chromatography. It was concluded that decreased protein/ cell resulted in an apparent increase in 35S-labelled glycosaminoglycan synthesis/mg of cell protein, whereas decreased uptake of [3H]glucosamine resulted in a decrease in their glucosamine labelling. The proteoglycans secreted by fibroblasts in 0.5% serum were similar in glycosaminoglycan composition, chain length and buoyant density to the dermatan sulphate proteoglycan, which is the major secreted component of cells in 10% serum. Larger heparan sulphate and chondroitin sulphate proteoglycans, which comprise about 40% of the total secreted proteoglycans of cultures in 10% serum, were greatly diminished in the medium of cultures in 0.5% serum. The proteoglycan profile of medium from density-inhibited cultures in 10% serum resembles that of proliferating cultures, indicating that lack of proliferation was not responsible for the alteration. The dermatan sulphate proteoglycan, participating in extracellular matrix structure, may be the primary tissue product of lung fibroblasts in vivo.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angello J. C., Hauschka S. D. Hyaluronate-cell interaction. Effects of exogenous hyaluronate on muscle fibroblast cell surface composition. Exp Cell Res. 1980 Feb;125(2):389–400. doi: 10.1016/0014-4827(80)90133-0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bradley K. H., Kawanami O., Ferrans V. J., Crystal R. G. The fibroblast of human lung alveolar structures: a differentiated cell with a major role in lung structure and function. Methods Cell Biol. 1980;21A:37–64. doi: 10.1016/s0091-679x(08)60757-8. [DOI] [PubMed] [Google Scholar]
- Breul S. D., Bradley K. H., Hance A. J., Schafer M. P., Berg R. A., Crystal R. G. Control of collagen production by human diploid lung fibroblasts. J Biol Chem. 1980 Jun 10;255(11):5250–5260. [PubMed] [Google Scholar]
- Carlstedt I., Cöster L., Malmström A. Isolation and characterization of dermatan sulphate and heparan sulphate proteoglycans from fibroblast culture. Biochem J. 1981 Jul 1;197(1):217–225. doi: 10.1042/bj1970217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn R. H., Cassiman J. J., Bernfield M. R. Relationship of transformation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan. J Cell Biol. 1976 Oct;71(1):280–294. doi: 10.1083/jcb.71.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Culp L. A., Murray B. A., Rollins B. J. Fibronectin and proteoglycans as determinants of cell-substratum adhesion. J Supramol Struct. 1979;11(3):401–427. doi: 10.1002/jss.400110314. [DOI] [PubMed] [Google Scholar]
- Das N. K., Murphy D. G. The National Institute on Aging repository cell cultures. Mech Ageing Dev. 1981 May;16(1):1–17. doi: 10.1016/0047-6374(81)90027-0. [DOI] [PubMed] [Google Scholar]
- Dell'Orco R. T., Mertens J. G., Kruse P. F., Jr Doubling potential, calendar time, and senescence of human diploid cells in culture. Exp Cell Res. 1973 Mar 15;77(1):356–360. doi: 10.1016/0014-4827(73)90588-0. [DOI] [PubMed] [Google Scholar]
- Dell'orco R. T. Maintenance of human diploid fibroblasts as arrested populations. Fed Proc. 1974 Aug;33(8):1969–1972. [PubMed] [Google Scholar]
- Gill P. J., Adler J., Silbert C. K., Silbert J. E. Removal of glycosaminoglycans from cultures of human skin fibroblasts. Biochem J. 1981 Jan 15;194(1):299–307. doi: 10.1042/bj1940299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hronowski L., Anastassiades T. P. The effect of cell density on net rates of glycosaminoglycan synthesis and secretion by cultured rat fibroblasts. J Biol Chem. 1980 Nov 10;255(21):10091–10099. [PubMed] [Google Scholar]
- Kim J. J., Conrad H. E. Kinetics of mucopolysaccharide and glycoprotein synthesis by chick embryo chondrocytes. Effect of D-glucose concentration in the culture medium. J Biol Chem. 1976 Oct 25;251(20):6210–6217. [PubMed] [Google Scholar]
- Kimura J. H., Caputo C. B., Hascall V. C. The effect of cycloheximide on synthesis of proteoglycans by cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 May 10;256(9):4368–4376. [PubMed] [Google Scholar]
- Lembach K. J. Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor. J Cell Physiol. 1976 Oct;89(2):277–288. doi: 10.1002/jcp.1040890211. [DOI] [PubMed] [Google Scholar]
- Moscatelli D., Rubin H. Hormonal control of hyaluronic acid production in fibroblasts and its relation to nucleic acid and protein synthesis. J Cell Physiol. 1977 Apr;91(1):79–88. doi: 10.1002/jcp.1040910109. [DOI] [PubMed] [Google Scholar]
- Radhakrishnamurthy B., Smart F., Dalferes E. R., Jr, Berenson G. S. Isolation and characterization of proteoglycans from bovine lung. J Biol Chem. 1980 Aug 25;255(16):7575–7582. [PubMed] [Google Scholar]
- Radhakrishnamurthy B., Williams J., Berenson G. S. The composition of glycosaminoglycans in developing rabbit lungs. Proc Soc Exp Biol Med. 1980 Jul;164(3):287–291. doi: 10.3181/00379727-164-40863. [DOI] [PubMed] [Google Scholar]
- Saarni H., Tammi M. A rapid method for separation and assay of radiolabeled mucopolysaccharides from cell culture medium. Anal Biochem. 1977 Jul;81(1):40–46. doi: 10.1016/0003-2697(77)90596-6. [DOI] [PubMed] [Google Scholar]
- Sahu S., Lynn W. S. Isolation and characterization of proteoglycans from porcine lungs. J Biol Chem. 1979 May 25;254(10):4262–4266. [PubMed] [Google Scholar]
- Stevens R. L., Hascall V. C. Characterization of proteoglycans synthesized by rat chondrosarcoma chondrocytes treated with multiplication-stimulating activity and insulin. J Biol Chem. 1981 Feb 25;256(4):2053–2058. [PubMed] [Google Scholar]
- Toole B. P., Lowther D. A. Dermatan sulfate-protein: isolation from and interaction with collagen. Arch Biochem Biophys. 1968 Dec;128(3):567–578. doi: 10.1016/0003-9861(68)90064-7. [DOI] [PubMed] [Google Scholar]
- Underhill C., Dorfman A. The role of hyaluronic acid in intercellular adhesion of cultured mouse cells. Exp Cell Res. 1978 Nov;117(1):155–164. doi: 10.1016/0014-4827(78)90438-x. [DOI] [PubMed] [Google Scholar]
- Vogel K. G., Kendall V. F. Cell-surface glycosaminoglycans: turnover in cultured human embryo fibroblasts (IMR-90). J Cell Physiol. 1980 Jun;103(3):475–487. doi: 10.1002/jcp.1041030313. [DOI] [PubMed] [Google Scholar]
- Vogel K. G., Peterson D. W. Extracellular, surface, and intracellular proteoglycans produced by human embryo lung fibroblasts in culture (IMR-90). J Biol Chem. 1981 Dec 25;256(24):13235–13242. [PubMed] [Google Scholar]
- Yanagishita M., Hascall V. C., Rodbard D. Biosynthesis of proteoglycans by rat granuloma cells cultured in vitro: modulation by gonadotropins, steroid hormones, prostaglandins, and a cyclic nucleotide. Endocrinology. 1981 Nov;109(5):1641–1649. doi: 10.1210/endo-109-5-1641. [DOI] [PubMed] [Google Scholar]
- Yanagishita M., Rodbard D., Hascall V. C. Isolation and characterization of proteoglycans from porcine ovarian follicular fluid. J Biol Chem. 1979 Feb 10;254(3):911–920. [PubMed] [Google Scholar]

