Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 1;207(3):589–594. doi: 10.1042/bj2070589

Amino acid sequences of three phospholipases A I, III and IV from the venom of the sea snake Laticauda semifasciata.

S Nishida, H S Kim, N Tamiya
PMCID: PMC1153902  PMID: 7165712

Abstract

Amino acid sequences of three phospholipases A, I, III and IV, from the venom of the sea snake Laticauda semifasciata were elucidated. Each protein consisted of a single chain of 118 amino acid residues, including 14 half-cystine residues. They showed high homology among themselves, and with the other snake-venom phospholipases A and with the enzymes from mammalian pancreas. Phospholipases A III and IV were especially similar to each other, with only four differences out of their 118 amino acid residues. Phospholipase A I contained one tryptophan residue at position 64, which was important for enzymic activity, whereas III and IV did not contain tryptophan residues and their corresponding positions were occupied by leucine residues. The substitution by leucine resulted in a decreased, but definite, phospholipase A activity. The substituted enzymes have a more potent neuromuscular blocking activity. Full experimental details and evidence for the amino acid sequences of the proteins have been deposited as Supplementary Publication SUP 50118 (39 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem.J. (1981) 193, 5.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botes D. P., Viljoen C. C. Bitis gabonica venom. The amino acid sequence of phospholipase A. J Biol Chem. 1974 Jun 25;249(12):3827–3835. [PubMed] [Google Scholar]
  2. Dijkstra B. W., Drenth J., Kalk K. H., Vandermaelen P. J. Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A2. J Mol Biol. 1978 Sep 5;124(1):53–60. doi: 10.1016/0022-2836(78)90146-8. [DOI] [PubMed] [Google Scholar]
  3. Drenth J., Enzing C. M., Kalk K. H., Vessies J. C. Structure of porcine pancreatic prephospholipase A2. Nature. 1976 Nov 25;264(5584):373–377. doi: 10.1038/264373a0. [DOI] [PubMed] [Google Scholar]
  4. Evenberg A., Meyer H., Gaastra W., Verheij H. M., De Haas G. H. Amino acid sequence of phospholipase A2 from horse pancreas. J Biol Chem. 1977 Feb 25;252(4):1189–1196. [PubMed] [Google Scholar]
  5. Fleer E. A., Verheij H. M., De Haas G. H. The primary structure of bovine pancreatic phospholipase A2. Eur J Biochem. 1978 Jan 2;82(1):261–269. doi: 10.1111/j.1432-1033.1978.tb12019.x. [DOI] [PubMed] [Google Scholar]
  6. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Halpert J., Eaker D. Amino acid sequence of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). J Biol Chem. 1975 Sep 10;250(17):6990–6997. [PubMed] [Google Scholar]
  8. Halpert J., Eaker D. Isolation and amino acid sequence of a neurotoxic phospholipase A from the venom of the Australian tiger snake Notechis scutatus scutatus. J Biol Chem. 1976 Dec 10;251(23):7343–7347. [PubMed] [Google Scholar]
  9. Halpert J., Eaker D., Karlsson E. The role of phospholipase activity in the action of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). FEBS Lett. 1976 Jan 1;61(1):72–76. doi: 10.1016/0014-5793(76)80174-3. [DOI] [PubMed] [Google Scholar]
  10. Harvey A. L., Tamiya N. Role of phospholipase A activity in the neuromuscular paralysis produced by some components isolated from the venom of the seasnake, Laticauda semifasciata. Toxicon. 1980;18(1):65–69. doi: 10.1016/0041-0101(80)90032-x. [DOI] [PubMed] [Google Scholar]
  11. Heinrikson R. L., Krueger E. T., Keim P. S. Amino acid sequence of phospholipase A2-alpha from the venom of Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J Biol Chem. 1977 Jul 25;252(14):4913–4921. [PubMed] [Google Scholar]
  12. Joubert F. J. Hemachatus haemachatus (Ringhals) venom. Purification, some properties and amino-acid sequence of phospholipase A (fraction DE-I). Eur J Biochem. 1975 Apr 1;52(3):539–544. doi: 10.1111/j.1432-1033.1975.tb04025.x. [DOI] [PubMed] [Google Scholar]
  13. Joubert F. J. Naja melanoleuca (forest cobra) venom. The amino acid sequence of phospholipase A, fraction DE-III. Biochim Biophys Acta. 1975 Feb 27;379(2):329–344. [PubMed] [Google Scholar]
  14. Joubert F. J. Naja mossambica mossambica venom. Purification, some properties and the amino acid sequences of three phospholipases A (CM-I, CM-II and CM-III). Biochim Biophys Acta. 1977 Jul 22;493(1):216–227. doi: 10.1016/0005-2795(77)90275-6. [DOI] [PubMed] [Google Scholar]
  15. Joubert F. J., Taljaard N. Purification, some properties and amino-acid sequences of two phospholipases A (CM-II and CM-III) from Naja naja kaouthia venom. Eur J Biochem. 1980 Dec;112(3):493–499. doi: 10.1111/j.1432-1033.1980.tb06112.x. [DOI] [PubMed] [Google Scholar]
  16. Joubert F. J. The amino acid sequence of phospholipase A, fractions DE-I and DE-II. Biochim Biophys Acta. 1975 Feb 27;379(2):345–359. [PubMed] [Google Scholar]
  17. Kondo K., Narita K., Lee C. Y. Amino acid sequences of the two polypeptide chains in beta1-bungarotoxin from the venom of Bungarus multicinctus. J Biochem. 1978 Jan;83(1):101–115. doi: 10.1093/oxfordjournals.jbchem.a131881. [DOI] [PubMed] [Google Scholar]
  18. Kondo K., Toda H., Narita K. Amino acid sequence of phospholipase A from Bungarus multicinctus venom. J Biochem. 1981 Jan;89(1):37–47. doi: 10.1093/oxfordjournals.jbchem.a133201. [DOI] [PubMed] [Google Scholar]
  19. Kondo K., Toda H., Narita K. Characterization of phospholipase A activity of beta1-bungarotoxin from Bungarus multicinctus venom. II. Identification of the histidine residue of beta1-bungarotoxin modified by p-bromophenacyl bromide. J Biochem. 1978 Nov;84(5):1301–1308. doi: 10.1093/oxfordjournals.jbchem.a132249. [DOI] [PubMed] [Google Scholar]
  20. Puijk W. C., Verheij H. M., De Haas G. H. The primary structure of phospholipase A2 from porcine pancreas. A reinvestigation. Biochim Biophys Acta. 1977 Jun 24;492(2):254–259. doi: 10.1016/0005-2795(77)90076-9. [DOI] [PubMed] [Google Scholar]
  21. Shipolini R. A., Callewaert G. L., Cottrell R. C., Vernon C. A. The amino-acid sequence and carbohydrate content of phospholipase A2 from bee venom. Eur J Biochem. 1974 Oct 2;48(2):465–476. doi: 10.1111/j.1432-1033.1974.tb03787.x. [DOI] [PubMed] [Google Scholar]
  22. Volwerk J. J., Pieterson W. A., de Haas G. H. Histidine at the active site of phospholipase A2. Biochemistry. 1974 Mar 26;13(7):1446–1454. doi: 10.1021/bi00704a020. [DOI] [PubMed] [Google Scholar]
  23. Yoshida H., Kudo T., Shinkai W., Tamiya N. Phospholipase A of sea snake Laticauda semifasciata venom. Isolation and properties of novel forms lacking tryptophan. J Biochem. 1979 Feb;85(2):379–388. doi: 10.1093/oxfordjournals.jbchem.a132344. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES