Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 1;207(3):609–612. doi: 10.1042/bj2070609

Superoxide dismutase-inhibitible reduction of cytochrome c by the alloxan radical. Implications for alloxan cytotoxicity.

C C Winterbourn
PMCID: PMC1153906  PMID: 6299273

Abstract

Cytochrome c was reduced when superoxide was generated from xanthine oxidase in the presence of alloxan, and by the reaction of alloxan and with reduced glutathione. In each case, most of the reduction was inhibited by superoxide dismutase, but considerably more enzyme was required than with superoxide alone. This indicates that the superoxide dismutase-inhibitible cytochrome c reduction was mainly due to a direct reaction with the alloxan radical, and implies that other reactions that are inhibited by superoxide dismutase could be due to either alloxan radicals or superoxide.

Full text

PDF
609

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen G., Heikkila R. E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem. 1974 Apr 25;249(8):2447–2452. [PubMed] [Google Scholar]
  2. Crouch R. K., Gandy S. E., Kimsey G., Galbraith R. A., Galbraith G. M., Buse M. G. The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes. 1981 Mar;30(3):235–241. doi: 10.2337/diab.30.3.235. [DOI] [PubMed] [Google Scholar]
  3. Fee J. A., Bergamini R., Briggs R. G. Observations on the mechanism of the oxygen/dialuric acid-induced hemolysis of vitamin e-deficient rat red blood cells and the protective roles of catalase and superoxide dismutase. Arch Biochem Biophys. 1975 Jul;169(1):160–167. doi: 10.1016/0003-9861(75)90329-x. [DOI] [PubMed] [Google Scholar]
  4. Fischer L. J., Hamburger S. A. Dimethylurea: a radical scavenger that protects isolated pancreatic islets from the effects of alloxan and dihydroxyfumarate exposure. Life Sci. 1980 Apr 28;26(17):1405–1409. doi: 10.1016/0024-3205(80)90043-0. [DOI] [PubMed] [Google Scholar]
  5. Fischer L. J., Hamburger S. A. Inhibition of alloxan action in isolated pancreatic islets by superoxide dismutase, catalase, and a metal chelator. Diabetes. 1980 Mar;29(3):213–216. doi: 10.2337/diab.29.3.213. [DOI] [PubMed] [Google Scholar]
  6. Grankvist K. Alloxan-induced luminol luminescence as a tool for investigating mechanisms of radical-mediated diabetogenicity. Biochem J. 1981 Dec 15;200(3):685–690. doi: 10.1042/bj2000685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grankvist K., Marklund S., Sehlin J., Täljedal I. B. Superoxide dismutase, catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem J. 1979 Jul 15;182(1):17–25. doi: 10.1042/bj1820017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grankvist K., Marklund S., Täljedal I. B. Influence of trace metals on alloxan cytotoxicity in pancreatic islets. FEBS Lett. 1979 Sep 1;105(1):15–18. doi: 10.1016/0014-5793(79)80877-7. [DOI] [PubMed] [Google Scholar]
  9. Grankvist K., Marklund S., Täljedal I. B. Superoxide dismutase is a prophylactic against alloxan diabetes. Nature. 1981 Nov 12;294(5837):158–160. doi: 10.1038/294158a0. [DOI] [PubMed] [Google Scholar]
  10. Hassan H. M., Dougherty H., Fridovich I. Inhibitors of superoxide dismutases: a cautionary tale. Arch Biochem Biophys. 1980 Feb;199(2):349–354. doi: 10.1016/0003-9861(80)90290-8. [DOI] [PubMed] [Google Scholar]
  11. Heikkila R. E., Winston B., Cohen G. Alloxan-induced diabetes-evidence for hydroxyl radical as a cytotoxic intermediate. Biochem Pharmacol. 1976 May 1;25(9):1085–1092. doi: 10.1016/0006-2952(76)90502-5. [DOI] [PubMed] [Google Scholar]
  12. Houée-Levin C., Gardès-Albert M., Ferradini C., Pucheault J. Pulse radiolytic investigations of the redox system alloxan-dialuric acid: evidence for a radical intermediate. Biochem Biophys Res Commun. 1979 Dec 14;91(3):1196–1200. doi: 10.1016/0006-291x(79)92006-0. [DOI] [PubMed] [Google Scholar]
  13. Houée C., Gardès M., Pucheault J., Ferradini C. Radical chemistry of alloxan-dialuric acid: role of the superoxide radical. Bull Eur Physiopathol Respir. 1981;17 (Suppl):43–48. [PubMed] [Google Scholar]
  14. Winterbourn C. C. Cytochrome c reduction by semiquinone radicals can be indirectly inhibited by superoxide dismutase. Arch Biochem Biophys. 1981 Jun;209(1):159–167. doi: 10.1016/0003-9861(81)90268-x. [DOI] [PubMed] [Google Scholar]
  15. Winterbourn C. C., French J. K., Claridge R. F. Superoxide dismutase as an inhibitor of reactions of semiquinone radicals. FEBS Lett. 1978 Oct 15;94(2):269–272. doi: 10.1016/0014-5793(78)80953-3. [DOI] [PubMed] [Google Scholar]
  16. Yamamoto H., Uchigata Y., Okamoto H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature. 1981 Nov 19;294(5838):284–286. doi: 10.1038/294284a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES