Abstract
Ribosomal protein phosphorylation was investigated in isolated ribosomal subunits and polyribosomes from rat cerebral cortex in the presence of [gamma-32P]ATP and purified catalytic subunit of cyclic AMP-dependent protein kinase from the same tissue. Ribosomal proteins that were most readily phosphorylated in isolated cerebral ribosomal subunits included proteins S2, S3a, S6 and S10 of the 40 S subunit and proteins L6, L13, L14, L19 and L29 of the 60 S subunit. These proteins were also phosphorylated in cellular preparations of rat cerebral cortex in situ or in vitro [Roberts & Ashby (1978) J. Biol. Chem. 253, 288-296; Roberts & Morelos (1979) Biochem. J. 184, 233-244]. However, several additional ribosomal proteins were phosphorylated when isolated 40 S or 60 S subunits were separately incubated in the reconstituted system. Analogous results were obtained with an equimolar mixture of cerebral 40 S and 60 S subunits under comparable conditions. In contrast, extensive exposure of purified cerebral polyribosomes to the catalytic subunit resulted in phosphorylation of only those ribosomal proteins of the 40 S subunit that were most highly labelled after the administration of [32P]Pi in vivo: proteins S2, S6 and S10. Ribosomal proteins of 60 S subunits that were readily phosphorylated in isolated cerebral polyribosomes included proteins L6, L13 and L29. These results indicate that polyribosome formation markedly decreases the number of ribosomal protein sites available for phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. Moreover, the findings suggest that, of the ribosomal protein phosphorylations observed in rat cerebral cortex in vivo, proteins S2, S6, S10, L6, L13 and L29 can be phosphorylated in polyribosomes, whereas proteins S3a, S5, L14 and L19 may become phosphorylated only in free ribosomal subunits.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alhanaty E., Bashan N., Moses S., Shaltiel S. Immobilized soybean trypsin inhibitor in the stabilization, resolution and purification of adenosine-3':5'-monophosphate-dependent protein kinases. Eur J Biochem. 1979 Nov 1;101(1):283–292. doi: 10.1111/j.1432-1033.1979.tb04241.x. [DOI] [PubMed] [Google Scholar]
- Ashby C. D., Walsh D. A. Characterization of the interaction of a protein inhibitor with adenosine 3',5'-monophosphate-dependent protein kinases. I. Interaction with the catalytic subunit of the protein kinase. J Biol Chem. 1972 Oct 25;247(20):6637–6642. [PubMed] [Google Scholar]
- Ashby C. D., Walsh D. A. Purification and characterization of an inhibitor protein of cyclic AMP-dependent protein kinases. Methods Enzymol. 1974;38:350–358. doi: 10.1016/0076-6879(74)38051-2. [DOI] [PubMed] [Google Scholar]
- Bechtel P. J., Beavo J. A., Krebs E. G. Purification and characterization of catalytic subunit of skeletal muscle adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1977 Apr 25;252(8):2691–2697. [PubMed] [Google Scholar]
- Cenatiempo Y., Cozzone A. J., Genot A., Reboud J. P. In vitro phosphorylation of proteins from free and membrane-bound rat liver polysomes. FEBS Lett. 1977 Jul 1;79(1):165–169. doi: 10.1016/0014-5793(77)80375-x. [DOI] [PubMed] [Google Scholar]
- Collatz E., Ulbrich N., Tsurugi K., Lightfoot H. N., MacKinlay W., Lin A., Wool I. G. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 40 S ribosomal subunit proteins Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and S29. J Biol Chem. 1977 Dec 25;252(24):9071–9080. [PubMed] [Google Scholar]
- Collatz E., Wool I. G., Lin A., Stöffler G. The isolation of eukaryotic ribosomal proteins. The purification and characterization of the 40 S ribosomal subunit proteins S2, S3, S4, S5, S6, S7, S8, S9, S13, S23/S24, S27, and S28. J Biol Chem. 1976 Aug 10;251(15):4666–4672. [PubMed] [Google Scholar]
- Corbin J. D., Reimann E. M. Assay of cyclic AMP-dependent protein kinases. Methods Enzymol. 1974;38:287–290. doi: 10.1016/0076-6879(74)38044-5. [DOI] [PubMed] [Google Scholar]
- Ebert R. F., Finn F. M. Isolation and characterization of two adenosine 3',5'-monophosphate-dependent protein kinases from bovine adrenal cortex. Endocrinology. 1981 Jul;109(1):197–204. doi: 10.1210/endo-109-1-197. [DOI] [PubMed] [Google Scholar]
- Eil C., Wool I. G. Function of phosphorylated ribosomes. The activity of ribosomal subunits phosphorylated in vitro by protein kinase. J Biol Chem. 1973 Jul 25;248(14):5130–5136. [PubMed] [Google Scholar]
- FLoyd G. A., Traugh J. A. Effects of cyclic AMP and fluoride on phosphorylation of ribosomal protein S6 and on protein synthesis in rabbit reticulocytes. Eur J Biochem. 1981 Jul;117(2):257–262. doi: 10.1111/j.1432-1033.1981.tb06331.x. [DOI] [PubMed] [Google Scholar]
- Grankowski N., Kramer G., Hardesty B. Purification and partial characterization of the catalytic subunit of cAMP-dependent protein kinases from reticulocytes. Arch Biochem Biophys. 1979 Oct 15;197(2):618–629. doi: 10.1016/0003-9861(79)90286-8. [DOI] [PubMed] [Google Scholar]
- Issinger O. G., Beier H., Speichermann N., Flokerzi V., Hofmann F. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Biochem J. 1980 Jan 1;185(1):89–99. doi: 10.1042/bj1850089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lastick S. M., McConkey E. H. HeLa ribosomal protein S6. Insulin and dibutyryl cyclic AMP affect different phosphopeptides. J Biol Chem. 1981 Jan 25;256(2):583–585. [PubMed] [Google Scholar]
- Leader D. P., Coia A. A. The phosphorylation of ribosomal protein S6 on the monoribosomes and polyribosomes of baby hamster kidney fibroblasts. FEBS Lett. 1978 Jun 15;90(2):270–274. doi: 10.1016/0014-5793(78)80383-4. [DOI] [PubMed] [Google Scholar]
- Leader D. P., Thomas A., Voorma H. O. The protein synthetic activity in vitro of ribosomes differing in the extent of phosphorylation of their ribosomal proteins. Biochim Biophys Acta. 1981 Nov 27;656(1):69–75. doi: 10.1016/0005-2787(81)90028-9. [DOI] [PubMed] [Google Scholar]
- Lin A., Tanaka T., Wool I. G. Isolation of eukaryotic ribosomal proteins: purification and characterization of S25 and L16. Biochemistry. 1979 Apr 17;18(8):1634–1637. doi: 10.1021/bi00575a040. [DOI] [PubMed] [Google Scholar]
- Lin A., Wool I. G. The molecular weights of rat liver ribosomal proteins determined by "three-dimensional" polyacrylamide gel electrophoresis. Mol Gen Genet. 1974;134(1):1–6. doi: 10.1007/BF00332807. [DOI] [PubMed] [Google Scholar]
- Maeno H., Johnson E. M., Greengard P. Subcellular distribution of adenosine 3',5'-monophosphate-dependent protein kinase in rat brain. J Biol Chem. 1971 Jan 10;246(1):134–142. [PubMed] [Google Scholar]
- Martini O. H., Kruppa J. Ribosomal phosphoproteins of mouse myeloma cells. Changes in the degree of phosphorylation induced by hypertonic initiation block. Eur J Biochem. 1979 Apr 2;95(2):349–358. doi: 10.1111/j.1432-1033.1979.tb12972.x. [DOI] [PubMed] [Google Scholar]
- Mastropaolo W., Henshaw E. C. Phosphorylation of ribosomal protein S6 in the Ehrlich ascites tumor cell. Lack of effect of phosphorylation upon ribosomal function in vitro. Biochim Biophys Acta. 1981 Dec 28;656(2):246–255. doi: 10.1016/0005-2787(81)90093-9. [DOI] [PubMed] [Google Scholar]
- McConkey E. H., Bielka H., Gordon J., Lastick S. M., Lin A., Ogata K., Reboud J. P., Traugh J. A., Traut R. R., Warner J. R. Proposed uniform nomenclature for mammalian ribosomal proteins. Mol Gen Genet. 1979 Jan 16;169(1):1–6. doi: 10.1007/BF00267538. [DOI] [PubMed] [Google Scholar]
- Mumby M., Traugh J. A. Dephosphorylation of translational initiation factors and 40S ribosomal subunits by phosphoprotein phosphatases from rabbit reticulocytes. Biochemistry. 1979 Oct 16;18(21):4548–4556. doi: 10.1021/bi00588a015. [DOI] [PubMed] [Google Scholar]
- Nielsen P. J., Duncan R., McConkey E. H. Phosphorylation of ribosomal protein S6. Relationship to protein synthesis in HeLa cells. Eur J Biochem. 1981 Dec;120(3):523–527. doi: 10.1111/j.1432-1033.1981.tb05731.x. [DOI] [PubMed] [Google Scholar]
- Peters K. A., Demaille J. G., Fischer E. H. Adenosine 3':5'-monophosphate dependent protein kinase from bovine heart. Characterization of the catalytic subunit. Biochemistry. 1977 Dec 27;16(26):5691–5697. doi: 10.1021/bi00645a007. [DOI] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Roberts S., Ashby D. Ribosomal protein phosphorylation in rat cerebral cortex in vitro. Influence of cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1978 Jan 10;253(1):288–296. [PubMed] [Google Scholar]
- Roberts S., Morelos B. S. Cerebral ribosomal protein phosphorylation in experimental hyperphenylalaninaemia. Biochem J. 1980 Aug 15;190(2):405–419. doi: 10.1042/bj1900405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts S., Morelos B. S. Inhibition of cerebral protein kinase activity and cyclic AMP-dependent ribosomal-protein phosphorylation in experimental hyperphenylalaninaemia. Biochem J. 1982 Feb 15;202(2):343–351. doi: 10.1042/bj2020343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts S., Morelos B. S. Phosphorylation of multiple proteins of both ribosomal subunits in rat cerebral cortex in vivo. Effect of adenosine 3':5'-cyclic monophosphate. Biochem J. 1979 Nov 15;184(2):233–244. doi: 10.1042/bj1840233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl J., Kobets N. D. Affinity labeling of proteins at the mRNA binding site of rat liver ribosomes by an analogue of octauridylate containing an alkylating group attached to the 3'-end. FEBS Lett. 1981 Jan 26;123(2):269–272. doi: 10.1016/0014-5793(81)80305-5. [DOI] [PubMed] [Google Scholar]
- Terao K., Ogata K. Proteins of small subunits of rat liver ribosomes that interact with poly(U). I. Effects of preincubation of poly(U) with 40 S subunits on the interactions of 40 S subunit proteins with aurintricarboxylic acid and with N,N'-p-phenylenedimaleimide. J Biochem. 1979 Sep;86(3):597–603. doi: 10.1093/oxfordjournals.jbchem.a132563. [DOI] [PubMed] [Google Scholar]
- Terao K., Ogata K. Proteins of small subunits of rat liver ribosomes that interact with poly(U). II. Cross-links between poly(U) and ribosomal proteins in 40 S subunits induced by UV irradiation. J Biochem. 1979 Sep;86(3):605–617. doi: 10.1093/oxfordjournals.jbchem.a132564. [DOI] [PubMed] [Google Scholar]
- Thomas G., Siegmann M., Kubler A. M., Gordon J., Jimenez de Asua L. Regulation of 40S ribosomal protein S6 phosphorylation in Swiss mouse 3T3 cells. Cell. 1980 Apr;19(4):1015–1023. doi: 10.1016/0092-8674(80)90092-6. [DOI] [PubMed] [Google Scholar]
- Tsurugi K., Collatz E., Todokoro K., Ulbrich N., Lightfoot H. N., Wool I. G. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 60 S ribosomal subunit proteins La, Lb, Lf, P1, P2, L13', L14, L18', L20, and L38. J Biol Chem. 1978 Feb 10;253(3):946–955. [PubMed] [Google Scholar]
- Tsurugi K., Collatz E., Todokoro K., Wool I. G. Isolation of eukaryotic ribosomal proteins. Purification and characterization of 60 S ribosomal subunit proteins L3, L6, L7', L8, L10, L15, L17, L18, L19, L23', L25, L27', L28, L29, L31, L32, L34, L35, L36, L36', and L37'. J Biol Chem. 1977 Jun 10;252(11):3961–3969. [PubMed] [Google Scholar]
- Tsurugi K., Collatz E., Wool E. G., Lin A. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 60 S ribosomal subunit proteins L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39. J Biol Chem. 1976 Dec 25;251(24):7940–7946. [PubMed] [Google Scholar]
- Ulbrich N., Wool I. G., Ackerman E., Sigler P. B. The identification by affinity chromatography of the rat liver ribosomal proteins that bind to elongator and initiator transfer ribonucleic acids. J Biol Chem. 1980 Jul 25;255(14):7010–7019. [PubMed] [Google Scholar]
- Ventimiglia F. A., Wool I. G. A kinase that transfers the gamma-phosphoryl group of GTP to proteins of eukaryotic 40S ribosomal subunits. Proc Natl Acad Sci U S A. 1974 Feb;71(2):350–354. doi: 10.1073/pnas.71.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walton G. M., Gill G. N. Adenosine 3',5'-monophosphate and protein kinase dependent phosphorylation of ribosomal protein. Biochemistry. 1973 Jul 3;12(14):2604–2611. doi: 10.1021/bi00738a009. [DOI] [PubMed] [Google Scholar]
- Westermann P., Heumann W., Bommer U. A., Bielka H., Nygard O., Hultin T. Crosslinking of initiation factor eIF-2 to proteins of the small subunit of rat liver ribosomes. FEBS Lett. 1979 Jan 1;97(1):101–104. doi: 10.1016/0014-5793(79)80061-7. [DOI] [PubMed] [Google Scholar]
- Westermann P., Nygård O., Bielka H. Cross-linking of Met-tRNAf to eIF-2 beta and to the ribosomal proteins S3a and S6 within the eukaryotic inhibition complex, eIF-2 .GMPPCP.Met-tRNAf.small ribosomal subunit. Nucleic Acids Res. 1981 May 25;9(10):2387–2396. doi: 10.1093/nar/9.10.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wettenhall R. E., Howlett G. J. Phosphorylation of a specific ribosomal protein during stimulation of thymocytes by concanavalin A and prostaglandin E1. J Biol Chem. 1979 Sep 25;254(18):9317–9323. [PubMed] [Google Scholar]
- Wool I. G. The structure and function of eukaryotic ribosomes. Annu Rev Biochem. 1979;48:719–754. doi: 10.1146/annurev.bi.48.070179.003443. [DOI] [PubMed] [Google Scholar]




