Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Nov 15;208(2):465–472. doi: 10.1042/bj2080465

Uptake and binding of cadmium and mercury to metallothionein in rat hepatocyte primary cultures

Ronald J Gerson 1, Zahir A Shaikh 1,*
PMCID: PMC1153985  PMID: 7159412

Abstract

The administration of inorganic Cd and Hg in vivo has been shown to result in markedly different metal concentrations in rat liver. Primary cultures of rat hepatocytes were utilized to gain insight into the dispositional differences between these chemically similar metals. Hepatocyte monolayer cultures were exposed to several concentrations of Cd or Hg (3, 10 and 30μm) in serum-containing medium for 30min. The cells were then washed and incubated in fresh medium for the remainder of the experiment. Hepatocytes exposed to Cd accumulated significantly more metal than hepatocytes exposed to equimolar concentrations of Hg. In cells exposed to 3μm-Cd there was an initial loss of Cd from the hepatocytes when placed in fresh medium, followed by a gradual re-uptake of metal, concomitant with increased binding to metallothionein. In hepatocytes exposed to 3 and 10μm-Cd, 87 and 77% of the intracellular Cd was bound to metallothionein within 24h. Loss of Hg from hepatocytes pulsed with 30μm-Hg was also observed upon the addition of fresh medium and continued for the duration of the experiment. No time-dependent increase in Hg binding to metallothionein was observed. A maximum of about 10% of the intracellular Hg was found associated with metallothionein in hepatocytes exposed to 30μm-Hg. Studies utilizing [35S]cysteine incorporation indicated significant increases in the amount of metallothionein synthesized in hepatocytes exposed to 3 and 10μm-Cd (300% of control value) and 30μm-Hg (150% of control value) 24h after metal pulsing. Time-course studies revealed a 6–12h lag in metallothionein synthesis, followed by a significant elevation in [35S]cysteine incorporation into metallothionein between 12 and 24h. These studies suggest that (a) isolated hepatocytes differentiate between Cd and Hg and preferentially accumulate the former, and (b) Cd strongly stimulates the induction of, and preferentially binds to, metallothionein, whereas Hg induces weakly, and does not preferentially bind to, metallothionein.

Full text

PDF
465

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryan S. E., Hidalgo H. A., Koppa V., Smith H. A. Cadmium, an effector in the synthesis of thionein. Environ Health Perspect. 1979 Feb;28:281–285. doi: 10.1289/ehp.7928281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen R. W., Whanger P. D., Weswig P. H. Biological function of metallothionein. I. Synthesis and degradation of rat liver metallothionein. Biochem Med. 1975 Feb;12(2):95–105. doi: 10.1016/0006-2944(75)90100-3. [DOI] [PubMed] [Google Scholar]
  3. Cherian M. G., Clarkson T. W. Biochemical changes in rat kidney on exposure to elemental mercury vapor: effect on biosynthesis of metallothionein. Chem Biol Interact. 1976 Feb;12(2):109–120. doi: 10.1016/0009-2797(76)90093-4. [DOI] [PubMed] [Google Scholar]
  4. Cherian M. G. The synthesis of metallothionein and cellular adaptation to metal toxicity in primary rat kidney epithelial cell cultures. Toxicology. 1980;17(2):225–231. doi: 10.1016/0300-483x(80)90098-0. [DOI] [PubMed] [Google Scholar]
  5. Chmielnicka J., Komsta-Szumska E., Jedrychowski R. Organ and subcellular distribution of mercury in rats as dependent on the time of exposure to sodium selenite. Environ Res. 1979 Oct;20(1):80–86. doi: 10.1016/0013-9351(79)90087-2. [DOI] [PubMed] [Google Scholar]
  6. Daniel M. R., Webb M., Cempel M. Metallothionein synthesis as an indication of the parenchymal origin of cells cultured from liver. Chem Biol Interact. 1977 Jan;16(1):101–106. doi: 10.1016/0009-2797(77)90156-9. [DOI] [PubMed] [Google Scholar]
  7. Durnam D. M., Palmiter R. D. Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem. 1981 Jun 10;256(11):5712–5716. [PubMed] [Google Scholar]
  8. Failla M. L., Cousins R. J., Mascenik M. J. Cadmium accumulation and metabolism by rat liver parenchymal cells in primary monolayer culture. Biochim Biophys Acta. 1979 Feb 19;583(1):63–72. doi: 10.1016/0304-4165(79)90310-6. [DOI] [PubMed] [Google Scholar]
  9. Failla M. L., Cousins R. J. Zinc accumulation and metabolism in primary cultures of adult rat liver cells. Regulation by glucocorticoids. Biochim Biophys Acta. 1978 Oct 18;543(3):293–304. doi: 10.1016/0304-4165(78)90047-8. [DOI] [PubMed] [Google Scholar]
  10. Hidalgo H. A., Koppa V., Bryan S. E. Induction of cadmium-thionein in isolated rat liver cells. Biochem J. 1978 Feb 15;170(2):219–225. doi: 10.1042/bj1700219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holt D., Magos L., Webb M. The interaction of cadium-induced rat renal metallothionein with bivalent mercury in vitro. Chem Biol Interact. 1980 Oct;32(1-2):125–135. doi: 10.1016/0009-2797(80)90072-1. [DOI] [PubMed] [Google Scholar]
  12. Jacobson K. B., Turner J. E. The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology. 1980;16(1):1–37. doi: 10.1016/0300-483x(80)90107-9. [DOI] [PubMed] [Google Scholar]
  13. Karin M., Herschman H. R., Weinstein D. Primary induction of metallothionein by dexamethasone in culture rat hepatocytes. Biochem Biophys Res Commun. 1980 Feb 12;92(3):1052–1069. doi: 10.1016/0006-291x(80)90808-6. [DOI] [PubMed] [Google Scholar]
  14. Klaassen C. D. Induction of metallothionein by adrenocortical steroids. Toxicology. 1981;20(4):275–279. doi: 10.1016/0300-483x(81)90034-2. [DOI] [PubMed] [Google Scholar]
  15. Komsta-Szumska E., Chmielnicka J. Binding of mercury and selenium in subcellular fractions of rat liver and kidneys following separate and joint administration. Arch Toxicol. 1977 Sep 28;38(3):217–228. doi: 10.1007/BF00293656. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Piotrowski J. K., Szymańska J. A. Influence of certain metals on the level of metallothionein-like proteins in the liver and kidneys of rats. J Toxicol Environ Health. 1976 Jul;1(6):991–1002. doi: 10.1080/15287397609529402. [DOI] [PubMed] [Google Scholar]
  18. Piotrowski J. K., Trojanowska B., Wiśniewska-Knypl J. M., Bolanowska W. Mercury binding in the kidney and liver of rats repeatedly exposed to mercuric chloride: induction of metallothionein by mercury and cadmium. Toxicol Appl Pharmacol. 1974 Jan;27(1):11–19. doi: 10.1016/0041-008x(74)90169-0. [DOI] [PubMed] [Google Scholar]
  19. Ridlington J. W., Winge D. R., Fowler B. A. Long-term turnover of cadmium metallothionein in liver and kidney following a single low dose of cadmium in rats. Biochim Biophys Acta. 1981 Mar 5;673(2):177–183. [PubMed] [Google Scholar]
  20. Rudd C. J., Herschman H. R. Metallothionein accumulation in response to cadmium in a clonal rat liver cell line. Toxicol Appl Pharmacol. 1978 Jun;44(3):511–521. doi: 10.1016/0041-008x(78)90259-4. [DOI] [PubMed] [Google Scholar]
  21. Sato M., Nagai Y. Mode of existence of cadmium in rat liver and kidney after prolonged subcutaneous administration. Toxicol Appl Pharmacol. 1980 Jun 15;54(1):90–99. doi: 10.1016/0041-008x(80)90010-1. [DOI] [PubMed] [Google Scholar]
  22. Sato M., Sugano H., Takizawa Y. Effects of methylmercury on zinc-thionein levels of rat liver. Arch Toxicol. 1981 Apr;47(2):125–133. doi: 10.1007/BF00332354. [DOI] [PubMed] [Google Scholar]
  23. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  24. Shaikh Z. A., Smith J. C. The biosynthesis of metallothionein rat liver and kidney after administration of cadmium. Chem Biol Interact. 1976 Dec;15(4):327–336. doi: 10.1016/0009-2797(76)90138-1. [DOI] [PubMed] [Google Scholar]
  25. Shaikh Z. A., Smith J. C. The mechanisms of hepatic and renal metallothionein biosynthesis in cadmium-exposed rats. Chem Biol Interact. 1977 Nov;19(2):161–171. doi: 10.1016/0009-2797(77)90028-x. [DOI] [PubMed] [Google Scholar]
  26. Squibb K. S., Cousins R. J., Feldman S. L. Control of zinc-thionein synthesis in rat liver. Biochem J. 1977 Apr 15;164(1):223–228. doi: 10.1042/bj1640223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Webb M. Binding of cadmium ions by rat liver and kidney. Biochem Pharmacol. 1972 Oct 15;21(20):2751–2765. doi: 10.1016/0006-2952(72)90023-8. [DOI] [PubMed] [Google Scholar]
  28. Webb M., Magos L., Holt D. The in vivo effects of maleate on the cation-distribution in rat kidney metallothionein sub-fractions after induction by cadmium and/or mercury. Chem Biol Interact. 1980 Oct;32(1-2):137–149. doi: 10.1016/0009-2797(80)90073-3. [DOI] [PubMed] [Google Scholar]
  29. Winge D. R., Premakumar R., Rajagopalan K. V. Metal-induced formation of metallothionein in rat liver. Arch Biochem Biophys. 1975 Sep;170(1):242–252. doi: 10.1016/0003-9861(75)90115-0. [DOI] [PubMed] [Google Scholar]
  30. Zelazowski A. J., Piotrowski J. K. Mercury-binding, copper-zinc proteins from rat kidney. Amino acid composition, molecular wieght and metal content. Biochim Biophys Acta. 1980 Sep 23;625(1):89–99. doi: 10.1016/0005-2795(80)90111-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES