Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 15;208(3):567–575. doi: 10.1042/bj2080567

Kinetics of subcellular distribution in rat intestine of 1,25-dihydroxycholecalciferol administered in vivo. Evidence for concentration within 5 min into purified nuclei.

J H Bloor, A Dasmahapatra, M M Weiser, W D Klohs
PMCID: PMC1154005  PMID: 6897704

Abstract

To better understand the initial steps in the induction of intestinal Ca2+ transport by 1,25-dihydroxycholecalciferol [1,25(OH)2D3], we studied the early subcellular localization of 1,25(OH)2D3 in rat intestine. Vitamin D-deficient rats received 300 pmol of 1,25(OH)2[3H]D3 intravenously at 5 min to 4h before being killed. Cells homogenized in buffer of I = 90 mmol/litre were fractionated by centrifugation into a crude nuclear pellet, purified nuclei, Golgi and basal-lateral membranes, cytosol and a post-nuclear pellet. Nuclear purification was established by biochemical and morphological criteria and gave a yield of 32 +/- 2% (mean +/- S.E.M.; n = 21). Although re-establishment of Ca2+ uptake by Golgi is one of the earliest reported intestinal responses to 1,25(OH)2D3, no direct localization of 1,25(OH)2D3 to Golgi was detected. Purified nuclei had the highest specific radioactivity at all times studied, with nuclear localization detectable at 5 min and peak nuclear uptake at 1 h. Relative specific radioactivity of nuclei to cytosol increased from 5 min to 30 min, at which time equilibrium between cytosol and nucleus appeared to be attained. Nuclear uptake occurred in all cells from villus to crypt. Of total nuclear binding 10% was resistant to high ionic strength buffer (I = 365 mmol/litre); peak nuclear uptake was observed at 30 min in this buffer. This tight binding may represent the active fraction of 1,25(OH)2D3. These results indicate that localization of 1,25(OH)2D3 to rat intestinal nuclei precedes the observed Golgi-membrane effects and suggest the existence of high-affinity nuclear 1,25(OH)2D3-binding sites.

Full text

PDF
567

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUSCH H., DAVIS J. R., ANDERSON D. C. Labeling of histones and other nuclear proteins with L-lysine-U-C14 in tissues of tumor-bearing rats. Cancer Res. 1958 Sep;18(8 Pt 1):916–926. [PubMed] [Google Scholar]
  3. Bachelet M., Ulmann A., Cloix J. F., Funck-Brentano J. L. Nuclear uptake of cholecalciferol metabolites in rat duodenal mucosa. J Steroid Biochem. 1977 Oct;8(10):1047–1049. doi: 10.1016/0022-4731(77)90272-2. [DOI] [PubMed] [Google Scholar]
  4. Barrack E. R., Coffey D. S. The specific binding of estrogens and androgens to the nuclear matrix of sex hormone responsive tissues. J Biol Chem. 1980 Aug 10;255(15):7265–7275. [PubMed] [Google Scholar]
  5. Berthillier G., Benedetto J. P., Got R. Présence de glycosyltransferases à accepteurs chromatiniens dans les membranes nucléaires d'hépatocytes de singe. Biochim Biophys Acta. 1980 Dec 12;603(2):245–254. doi: 10.1016/0005-2736(80)90371-5. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. I. Association of 1 alpha,25-dihydroxycholecalciferol with intestinal mucosa chromatin. J Biol Chem. 1974 Feb 25;249(4):1251–1257. [PubMed] [Google Scholar]
  8. Brumbaugh P. F., Haussler M. R. Specific binding of 1alpha,25-dihydroxycholecalciferol to nuclear components of chick intestine. J Biol Chem. 1975 Feb 25;250(4):1588–1594. [PubMed] [Google Scholar]
  9. Chen T. C., DeLuca H. F. Receptors of 1,25-dikydroxycholecalciferol in rat intestine. J Biol Chem. 1973 Jul 25;248(14):4890–4895. [PubMed] [Google Scholar]
  10. Clark J. H., Peck E. J. Nuclear retention of receptor-oestrogen complex and nuclear acceptor sites. Nature. 1976 Apr 15;260(5552):635–637. doi: 10.1038/260635a0. [DOI] [PubMed] [Google Scholar]
  11. Colston K., Feldman D. Nuclear translocation of the 1,25-dihydroxycholecalciferol receptor in mouse kidney. J Biol Chem. 1980 Aug 25;255(16):7510–7513. [PubMed] [Google Scholar]
  12. Dahlqvist A. Assay of intestinal disaccharidases. Anal Biochem. 1968 Jan;22(1):99–107. doi: 10.1016/0003-2697(68)90263-7. [DOI] [PubMed] [Google Scholar]
  13. Eil C., Marx S. J. Nuclear uptake of 1,25-dihydroxy[3H]cholecalciferol in dispersed fibroblasts cultured from normal human skin. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2562–2566. doi: 10.1073/pnas.78.4.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Esvelt R. P., Schnoes H. K., DeLuca H. F. Isolation and characterization of 1 alpha-hydroxy-23-carboxytetranorvitamin D: a major metabolite of 1,25-dihydroxyvitamin D3. Biochemistry. 1979 Sep 4;18(18):3977–3983. doi: 10.1021/bi00585a021. [DOI] [PubMed] [Google Scholar]
  15. Forstner G. G., Sabesin S. M., Isselbacher K. J. Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J. 1968 Jan;106(2):381–390. doi: 10.1042/bj1060381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Franceschi R. T., DeLuca H. F. Aggregation properties of the 1,25-dihydroxyvitamin D3 receptor from chick intestinal cytosol. J Biol Chem. 1979 Nov 25;254(22):11629–11635. [PubMed] [Google Scholar]
  17. Freedman R. A., Weiser M. M., Isselbacher K. J. Calcium translocation by Golgi and lateral-basal membrane vesicles from rat intestine: decrease in vitamin D-deficient rats. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3612–3616. doi: 10.1073/pnas.74.8.3612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frolik C. A., DeLuca H. F. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972 Nov;51(11):2900–2906. doi: 10.1172/JCI107114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. GUROFF G., DELUCA H. F., STEENBOCK H. Citrate and action of vitamin D on calcium and phosphorus metabolism. Am J Physiol. 1963 May;204:833–836. doi: 10.1152/ajplegacy.1963.204.5.833. [DOI] [PubMed] [Google Scholar]
  20. Gelbard H. A., Stern P. H., U'Prichard D. C. 1 alpha, 25-Dihydroxyvitamin D3 nuclear receptors in pituitary. Science. 1980 Sep 12;209(4462):1247–1249. doi: 10.1126/science.6250221. [DOI] [PubMed] [Google Scholar]
  21. Haussler M. R., Myrtle J. F., Norman A. W. The association of a metabolite of vitamin D3 with intestinal mucosa chromatin in vivo. J Biol Chem. 1968 Aug 10;243(15):4055–4064. [PubMed] [Google Scholar]
  22. Haussler M. R., Norman A. W. Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci U S A. 1969 Jan;62(1):155–162. doi: 10.1073/pnas.62.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hobden A. N., Harding M., Lawson D. E. 1,25-Dihydroxycholecalciferol stimulation of a mitochondrial protein in chick intestinal cells. Nature. 1980 Dec 25;288(5792):718–720. doi: 10.1038/288718a0. [DOI] [PubMed] [Google Scholar]
  24. Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
  25. Jones P. G., Haussler M. R. Scintillation autoradiographic localization of 1,25-dihydroxyvitamin D3 in chick intestine. Endocrinology. 1979 Feb;104(2):313–321. doi: 10.1210/endo-104-2-313. [DOI] [PubMed] [Google Scholar]
  26. Lawson D. E., Wilson P. W., Barker D. C., Kodicek E. Isolation of chick intestinal nuclei. Effect of vitamin D3 on nuclear metabolism. Biochem J. 1969 Nov;115(2):263–268. doi: 10.1042/bj1150263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lawson D. E., Wilson P. W. Intranuclear localization and receptor proteins for 1,25-dihydroxycholecalciferol in chick intestine. Biochem J. 1974 Dec;144(3):573–583. doi: 10.1042/bj1440573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MacLaughlin J. A., Weiser M. M., Freedman R. A. Biphasic recovery of vitamin D-dependent Ca2+ uptake by rat intestinal Golgi membranes. Gastroenterology. 1980 Feb;78(2):325–332. [PubMed] [Google Scholar]
  29. Marche P., Cassier P., Mathieu H. Intestinal calcium-binding protein. A protein indicator of enterocyte maturation associated with the terminal web. Cell Tissue Res. 1980;212(1):63–72. doi: 10.1007/BF00234033. [DOI] [PubMed] [Google Scholar]
  30. Marver D., Goodman D., Edelman I. S. Relationships between renal cytoplasmic and nuclear aldosterone-receptors. Kidney Int. 1972 Apr;1(4):210–223. doi: 10.1038/ki.1972.31. [DOI] [PubMed] [Google Scholar]
  31. Morrissey R. L., Zolock D. T., Bikle D. D., Empson R. N., Jr, Bucci T. J. Intestinal response to 1 alpha, 25-dihydroxycholecalciferol. I. RNA polymerase, alkaline phosphatase, calcium and phosphorus uptake in vitro, and in vivo calcium transport and accumulation. Biochim Biophys Acta. 1978 Jan 3;538(1):23–33. doi: 10.1016/0304-4165(78)90248-9. [DOI] [PubMed] [Google Scholar]
  32. Norman A. W., Ross F. P. Vitamin D seco-steroids: unique molecules with both hormone and possible membranophilic properties. Life Sci. 1979 Feb 26;24(9):759–769. doi: 10.1016/0024-3205(79)90359-x. [DOI] [PubMed] [Google Scholar]
  33. O'Malley B. W., Toft D. O., Sherman M. R. Progesterone-binding components of chick oviduct. II. Nuclear components. J Biol Chem. 1971 Feb 25;246(4):1117–1122. [PubMed] [Google Scholar]
  34. Podolsky D. K., Weiser M. M. Galactosyltransferase activities in human sera: detection of a cancer-associated isoenzyme. Biochem Biophys Res Commun. 1975 Jul 22;65(2):545–551. doi: 10.1016/s0006-291x(75)80181-1. [DOI] [PubMed] [Google Scholar]
  35. Richard M., Martin A., Louisot P. Evidence for glycosyl-transferases in rat liver nuclei. Biochem Biophys Res Commun. 1975 May 5;64(1):109–114. doi: 10.1016/0006-291x(75)90225-9. [DOI] [PubMed] [Google Scholar]
  36. Ruh T. S., Baudendistel L. J. Different nuclear binding sites for antiestrogen and estrogen receptor complexes. Endocrinology. 1977 Feb;100(2):420–426. doi: 10.1210/endo-100-2-420. [DOI] [PubMed] [Google Scholar]
  37. Siebert G., Humphrey G. B. Enzymology of the nucleus. Adv Enzymol Relat Areas Mol Biol. 1965;27:239–288. doi: 10.1002/9780470122723.ch5. [DOI] [PubMed] [Google Scholar]
  38. Spencer R., Charman M., Wilson P. W., Lawson E. M. The relationship between vitamin D-stimulated calcium transport and intestinal calcium-binding protein in the chicken. Biochem J. 1978 Jan 15;170(1):93–101. doi: 10.1042/bj1700093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  40. Stumpf W. E., Sar M., Reid F. A., Tanaka Y., DeLuca H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979 Dec 7;206(4423):1188–1190. doi: 10.1126/science.505004. [DOI] [PubMed] [Google Scholar]
  41. Tsai H. C., Norman A. W. Studies on the mode of action of calciferol. VI. Effect of 1,25-dihydroxy-vitamin D3 on RNA synthesis in the intestinal mucosa. Biochem Biophys Res Commun. 1973 Sep 18;54(2):622–627. doi: 10.1016/0006-291x(73)91468-x. [DOI] [PubMed] [Google Scholar]
  42. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. WROBLEWSKI F., LADUE J. S. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955 Oct;90(1):210–213. doi: 10.3181/00379727-90-21985. [DOI] [PubMed] [Google Scholar]
  45. Walters M. R., Hunziker W., Norman A. W. Unoccupied 1,25-dihydroxyvitamin D3 receptors. Nuclear/cytosol ratio depends on ionic strength. J Biol Chem. 1980 Jul 25;255(14):6799–6805. [PubMed] [Google Scholar]
  46. Weisbrod S., Weintraub H. Isolation of a subclass of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin. Proc Natl Acad Sci U S A. 1979 Feb;76(2):630–634. doi: 10.1073/pnas.76.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weiser M. M., Bloor J. H., Dasmahapatra A. Intestinal calcium absorption and vitamin D metabolism. J Clin Gastroenterol. 1982 Feb;4(1):75–86. doi: 10.1097/00004836-198202000-00014. [DOI] [PubMed] [Google Scholar]
  48. Weiser M. M. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem. 1973 Apr 10;248(7):2536–2541. [PubMed] [Google Scholar]
  49. Weiser M. M., Neumeier M. M., Quaroni A., Kirsch K. Synthesis of plasmalemmal glycoproteins in intestinal epithelial cells. Separation of Golgi membranes from villus and crypt cell surface membranes; glycosyltransferase activity of surface membrane. J Cell Biol. 1978 Jun;77(3):722–734. doi: 10.1083/jcb.77.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wilson P. W., Lawson D. E. 1,25-Dihydroxyvitamin D stimulation of specific membrane proteins in chick intestine. Biochim Biophys Acta. 1977 May 26;497(3):805–811. doi: 10.1016/0304-4165(77)90302-6. [DOI] [PubMed] [Google Scholar]
  51. Wilson P. W., Lawson D. E. Incorporation of [3H]leucine into an actin-like protein in response to 1,25-dihydroxycholecalciferol in chick intestinal brush borders. Biochem J. 1978 Aug 1;173(2):627–631. doi: 10.1042/bj1730627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yamamoto K. R., Alberts B. On the specificity of the binding of the estradiol receptor protein to deoxyribonucleic acid. J Biol Chem. 1974 Nov 25;249(22):7076–7086. [PubMed] [Google Scholar]
  53. Zerwekh J. E., Haussler M. R., Lindell T. J. Rapid enhancement of chick intestinal DNA-dependent RNA polymerase II activity by 1 alpha, 25-dihydroxyvitamin D3, in vivo. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2337–2341. doi: 10.1073/pnas.71.6.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zerwekh J. E., Lindell T. J., Haussler M. R. Increased intestinal chromatin template activity. Influence of 1alpha,25-dihydroxyvitamin D3 and hormone-receptor complexes. J Biol Chem. 1976 Apr 25;251(8):2388–2394. [PubMed] [Google Scholar]
  55. Zile M., Bunge E. C., Barsness L., Yamada S., Schnoes H. K., DeLuca H. F. Localization of 1,25-dihydroxyvitamin D3 in intestinal nuclei in vivo. Arch Biochem Biophys. 1978 Feb;186(1):15–24. doi: 10.1016/0003-9861(78)90458-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES