Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 15;208(3):765–771. doi: 10.1042/bj2080765

Modulation of cerebral catecholamine concentrations during hyperphenylalaninaemia.

C A Brass, O Greengard
PMCID: PMC1154029  PMID: 7165732

Abstract

Hyperphenylalaninaemia induced by daily injections of alpha-methylphenylalanine plus phenylalanine caused 20-40% decreases in cerebral dopamine (3,4-dihydroxyphenethylamine) and noradrenaline in 7- and 11-day-old rats. alpha-Methylphenylalanine alone as well as phenylalanine alone caused cerebral dopamine depletion. However, the effects were not additive, in that the depletion caused by alpha-methylphenylalanine was greater, not less, than that after treatment with both it and phenylalanine. Increased concentrations of tyrosine in the brain, owing to administered or endogenously formed tyrosine, could overcome the effect of excess phenylalanine on cerebral dopamine content. The fact that the inhibition of tyrosine hydroxylase by phenylalanine (or alpha-methylphenylalanine) in vitro was overcome by tyrosine concentrations similar to those effective in vivo further implicates the tyrosine hydroxylase inhibition as the mechanism underlying the dopamine depletion in hyperphenylalaninaemia. These results provide a theoretical basis for elevation, by tyrosine supplementation, of the cerebral phenylalanine/tyrosine ratio as a possible treatment modality for phenylketonuria.

Full text

PDF
765

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELROD J., TOMCHICK R. Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem. 1958 Sep;233(3):702–705. [PubMed] [Google Scholar]
  2. Brozoski T. J., Brown R. M., Rosvold H. E., Goldman P. S. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science. 1979 Aug 31;205(4409):929–932. doi: 10.1126/science.112679. [DOI] [PubMed] [Google Scholar]
  3. Cession-Fossion A., Vandermeulen R., Dodinval P., Chantraine J. M. Elimination urinaire de l'adrénaline, de la noradrénaline et de l'acide vanillyl-mandélique chez les enfants oligophrènes phénylpyruviques. Pathol Biol. 1966 Dec;14(23):1157–1159. [PubMed] [Google Scholar]
  4. Coyle J. T., Axelrod J. Development of the uptake and storage of L-( 3 H)norepinephrine in the rat brain. J Neurochem. 1971 Nov;18(11):2061–2075. doi: 10.1111/j.1471-4159.1971.tb05065.x. [DOI] [PubMed] [Google Scholar]
  5. Coyle J. T., Henry D. Catecholamines in fetal and newborn rat brain. J Neurochem. 1973 Jul;21(1):61–67. doi: 10.1111/j.1471-4159.1973.tb04225.x. [DOI] [PubMed] [Google Scholar]
  6. Curtius H. C., Baerlocher K., Völlmin J. A. Pathogenesis of phenylketonuria: inhibition of DOPA and catecholamine synthesis in patients with phenylketonuria. Clin Chim Acta. 1972 Nov;42(1):235–239. doi: 10.1016/0009-8981(72)90406-8. [DOI] [PubMed] [Google Scholar]
  7. Delvalle J. A., Dienel G., Greengard O. Comparison of alpha-methylphenylalanine and p-chlorophenylalanine as inducers of chronic hyperphenylalaninaemia in developing rats. Biochem J. 1978 Mar 15;170(3):449–459. doi: 10.1042/bj1700449b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deskin R., Seidler F. J., Whitmore W. L., Slotkin T. A. Development of alpha-noradrenergic and Dopaminergic receptor systems depends on maturation of their presynaptic nerve terminals in the rat brain. J Neurochem. 1981 May;36(5):1683–1690. doi: 10.1111/j.1471-4159.1981.tb00419.x. [DOI] [PubMed] [Google Scholar]
  9. Glick S. D., Greengard O. Exaggerated cerebral lateralization in rats after early postnatal hyperphenylalaninemia. Brain Res. 1980 Nov 24;202(1):243–248. [PubMed] [Google Scholar]
  10. Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
  11. Greengard O., Yoss M. S., Del Valle J. A. Alpha-methylphenylalanine, a new inducer of chronic hyperphenylalaninemia in sucling rats. Science. 1976 Jun 4;192(4243):1007–1008. doi: 10.1126/science.944951. [DOI] [PubMed] [Google Scholar]
  12. Isaacs C. E., Greengard O. The effect of hyperphenylalaninaemia on glycine metabolism in developing rat brain. Biochem J. 1980 Nov 15;192(2):441–448. doi: 10.1042/bj1920441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kempf E., Greilsamer J., Mack G., Mandel P. Correlation of behavioural differences in three strains of mice with differences in brain amines. Nature. 1974 Feb 15;247(5441):483–485. doi: 10.1038/247483a0. [DOI] [PubMed] [Google Scholar]
  14. Kirksey D. F., Seidler F. J., Slotkin T. A. Ontogeny of (--)-[3H]norepinephrine uptake properties of synaptic storage vesicles of rat brain. Brain Res. 1978 Jul 14;150(2):367–375. doi: 10.1016/0006-8993(78)90287-1. [DOI] [PubMed] [Google Scholar]
  15. LEVITT M., SPECTOR S., SJOERDSMA A., UDENFRIEND S. ELUCIDATION OF THE RATE-LIMITING STEP IN NOREPINEPHRINE BIOSYNTHESIS IN THE PERFUSED GUINEA-PIG HEART. J Pharmacol Exp Ther. 1965 Apr;148:1–8. [PubMed] [Google Scholar]
  16. Lane J. D., Schöne B., Langenbeck U., Neuhoff V. Characterization of experimental phenylketonuria. Augmentation of hyperphenylalaninemia with alpha-methylphenylalanine and p-chlorophenylalanine. Biochim Biophys Acta. 1980 Jan 17;627(2):144–156. doi: 10.1016/0304-4165(80)90316-5. [DOI] [PubMed] [Google Scholar]
  17. Lowden J. A., LaRamée M. A. Hyperphenylalaninemia: the effect of cerebral amino acid levels during development. Can J Biochem. 1969 Sep;47(9):883–888. doi: 10.1139/o69-138. [DOI] [PubMed] [Google Scholar]
  18. Luttges M. W., Gerren R. A. Postnatal alpha-methylphenylalanine treatment effects on adult mouse locomotor activity and avoidance learning. Pharmacol Biochem Behav. 1979 Nov;11(5):493–498. doi: 10.1016/0091-3057(79)90031-5. [DOI] [PubMed] [Google Scholar]
  19. McGee M. M., Greengard O., Knox W. E. The quantitative determination of phenylalanine hydroxylase in rat tissues. Its developmental formation in liver. Biochem J. 1972 May;127(4):669–674. doi: 10.1042/bj1270669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McKean C. M., Boggs D. E., Peterson N. A. The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain. J Neurochem. 1968 Mar;15(3):235–241. doi: 10.1111/j.1471-4159.1968.tb06202.x. [DOI] [PubMed] [Google Scholar]
  21. McKean C. M. The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Brain Res. 1972 Dec 12;47(2):469–476. doi: 10.1016/0006-8993(72)90653-1. [DOI] [PubMed] [Google Scholar]
  22. NADLER H. L., HSIA D. Y. Epinephrine metabolism in phenylketonuria. Proc Soc Exp Biol Med. 1961 Aug-Sep;107:721–723. doi: 10.3181/00379727-107-26734. [DOI] [PubMed] [Google Scholar]
  23. NAGATSU T., LEVITT M., UDENFRIEND S. TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. J Biol Chem. 1964 Sep;239:2910–2917. [PubMed] [Google Scholar]
  24. Saller C. F., Zigmond M. J. A radioenzymatic assay for catecholamines and dihydroxyphenylacetic acid. Life Sci. 1978 Sep 18;23(11):1117–1130. doi: 10.1016/0024-3205(78)90345-4. [DOI] [PubMed] [Google Scholar]
  25. Simon H., Scatton B., Moal M. L. Dopaminergic A10 neurones are involved in cognitive functions. Nature. 1980 Jul 10;286(5769):150–151. doi: 10.1038/286150a0. [DOI] [PubMed] [Google Scholar]
  26. UDENFRIEND S., COOPER J. R. The chemical estimation of tyrosine and tyramine. J Biol Chem. 1952 May;196(1):227–233. [PubMed] [Google Scholar]
  27. WEIL-MALHERBE H. The concentration of adrenaline in human plasma and its relation to mental activity. J Ment Sci. 1955 Oct;101(425):733–755. doi: 10.1192/bjp.101.425.733. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES