Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 15;208(3):773–781. doi: 10.1042/bj2080773

Characterization of calcium binding to brush-border membranes from rat duodenum.

A Miller 3rd, S T Li, F Bronner
PMCID: PMC1154030  PMID: 7165733

Abstract

The Ca2+-binding properties of isolated brush-border membranes at physiological ionic strength and pH were examined by rapid Millipore filtration. A comprehensive analysis of the binding data suggested the presence of two types of Ca2+-binding sites. The high-affinity sites, Ka = (6.3 +/- 3.3) X 10(5) M-1 (mean +/- S.E.M.), bound 0.8 +/- 0.1 nmol of Ca2+/mg of protein and the low-affinity sites, Ka = (2.8 +/- 0.3) X 10(2) M-1, bound 33 +/- 3.5 nmol of Ca2+/mg of protein. The high-affinity site exhibited a selectivity for Ca2+, since high concentrations of competing bivalent cations were required to inhibit Ca2+ binding. The relative effectiveness of the competing cations (1 and 10 mM) for the high-affinity site was Mn2+ approximately equal to Sr2+ greater than Ba2+ greater than Mg2+. Data from the pH studies, treatment of the membranes with carbodi-imide and extraction of phospholipids with aqueous acetone and NH3 provided evidence that the low-affinity sites were primarily phospholipids and the high-affinity sites were either phosphoprotein or protein with associated phospholipid. Two possible roles for the high-affinity binding sites are suggested. Either high-affinity Ca2+ binding is involved with specific enzyme activities or Ca2+ transport across the luminal membrane occurs via a Ca2+ channel which contains a high-affinity Ca2+-specific binding site that may regulate the intracellular Ca2+ concentration and gating of the channel.

Full text

PDF
773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. P., McGill K. A., Warren G. B. Transbilayer disposition of the phospholipid annulus surrounding a calcium transport protein. Nature. 1978 Aug 24;274(5673):823–825. doi: 10.1038/274823a0. [DOI] [PubMed] [Google Scholar]
  2. Bronner F., Freund T. Intestinal CaBP: a new quantitive index of vitamin D deficiency in the rat. Am J Physiol. 1975 Sep;229(3):689–694. doi: 10.1152/ajplegacy.1975.229.3.689. [DOI] [PubMed] [Google Scholar]
  3. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  4. Chevallier J., Butow R. A. Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle. Biochemistry. 1971 Jul 6;10(14):2733–2737. doi: 10.1021/bi00790a012. [DOI] [PubMed] [Google Scholar]
  5. De Jonge H. R., Ghijsen W. E., Van Os C. H. Phosphorylated intermediates of Ca2+ -ATPase and alkaline phosphatase in plasma membranes from rat duodenal epithelium. Biochim Biophys Acta. 1981 Sep 21;647(1):140–149. doi: 10.1016/0005-2736(81)90302-3. [DOI] [PubMed] [Google Scholar]
  6. Fleischer S., Fleischer B., Stoeckenius W. Fine structure of lipid-depleted mitochondria. J Cell Biol. 1967 Jan;32(1):193–208. doi: 10.1083/jcb.32.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forstner G. G., Tanaka K., Isselbacher K. J. Lipid composition of the isolated rat intestinal microvillus membrane. Biochem J. 1968 Aug;109(1):51–59. doi: 10.1042/bj1090051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghijsen W. E., de Jong M. D., van Os C. H. Dissociation between Ca2+-ATPase and alkaline phosphatase activities in plasma membranes of rat duodenum. Biochim Biophys Acta. 1980 Jul;599(2):538–551. doi: 10.1016/0005-2736(80)90198-4. [DOI] [PubMed] [Google Scholar]
  9. Ghijsen W. E., van Os C. H. Ca-stimulated ATPase in brush border and basolateral membranes of rat duodenum with high affinity sites for Ca ions. Nature. 1979 Jun 28;279(5716):802–803. doi: 10.1038/279802a0. [DOI] [PubMed] [Google Scholar]
  10. HURST R. O. THE DETERMINATION OF NUCLEOTIDE PHOSPHORUS WITH A STANNOUS CHLORIDE-HYDRAZINE SULPHATE REAGENT. Can J Biochem. 1964 Feb;42:287–292. doi: 10.1139/o64-033. [DOI] [PubMed] [Google Scholar]
  11. Hemminki K. Calcium binding to brain plasma membranes. Biochim Biophys Acta. 1974 Sep 6;363(2):202–210. doi: 10.1016/0005-2736(74)90059-5. [DOI] [PubMed] [Google Scholar]
  12. Hendrickson H. S., Fullington J. G. Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide. Biochemistry. 1965 Aug;4(8):1599–1605. doi: 10.1021/bi00884a021. [DOI] [PubMed] [Google Scholar]
  13. Hesketh T. R., Smith G. A., Houslay M. D., McGill K. A., Birdsall N. J., Metcalfe J. C., Warren G. B. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry. 1976 Sep 21;15(19):4145–4151. doi: 10.1021/bi00664a002. [DOI] [PubMed] [Google Scholar]
  14. Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kowarski S., Schachter D. Intestinal membrane calcium-binding protein. Vitamin D-dependent membrane component of the intestinal calcium transport mechanism. J Biol Chem. 1980 Nov 25;255(22):10834–10840. [PubMed] [Google Scholar]
  16. LASZLO D., EKSTEIN D. M., LEWIN R., STERN K. G. Biological studies on stable and radio-active rare earth compounds. I. On the distribution of lanthanum in the mammalian organism. J Natl Cancer Inst. 1952 Oct;13(2):559–573. [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lever J. E. The use of membrane vesicles in transport studies. CRC Crit Rev Biochem. 1980 Jan;7(3):187–246. doi: 10.3109/10409238009105462. [DOI] [PubMed] [Google Scholar]
  20. Li S. T., Katz E. P. An electrostatic model for collagen fibrils. The interaction of reconstituted collagen with Ca++, Na+, and Cl-. Biopolymers. 1976 Aug;15(8):1439–1460. doi: 10.1002/bip.1976.360150802. [DOI] [PubMed] [Google Scholar]
  21. Li S. T., Katz E. P. On the state of anionic groups of demineralized matrices of bone and dentine. Calcif Tissue Res. 1977 Feb 11;22(3):275–284. doi: 10.1007/BF02010366. [DOI] [PubMed] [Google Scholar]
  22. Li S., Golub E., Katz E. P. Electrostatic side chain complementarity in collagen fibrils. J Mol Biol. 1975 Nov 15;98(4):835–839. doi: 10.1016/s0022-2836(75)80015-5. [DOI] [PubMed] [Google Scholar]
  23. McDonald J. M., Bruns D. E., Jarett L. Characterization of calcium binding to adipocyte plasma membranes. J Biol Chem. 1976 Sep 10;251(17):5345–5351. [PubMed] [Google Scholar]
  24. Miller A., 3rd, Bronner F. Calcium uptake in isolated brush-border vesicles from rat small intestine. Biochem J. 1981 May 15;196(2):391–401. doi: 10.1042/bj1960391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller A., 3rd, Ueng T. H., Bronner F. Isolation of a vitamin D-dependent, calcium-binding protein from brush borders of rat duodenal mucosa. FEBS Lett. 1979 Jul 15;103(2):319–322. doi: 10.1016/0014-5793(79)81353-8. [DOI] [PubMed] [Google Scholar]
  26. Norman A. W., Putkey J. A., Nemere I. Intestinal calcium transport: pleiotropic effects mediated by vitamin D. Fed Proc. 1982 Jan;41(1):78–83. [PubMed] [Google Scholar]
  27. Palmer R. F., Posey V. A. Calcium and adenosine triphosphate binding to renal membranes. J Gen Physiol. 1970 Jan;55(1):89–103. doi: 10.1085/jgp.55.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rasmussen H., Matsumoto T., Fontaine O., Goodman D. B. Role of changes in membrane lipid structure in the action of 1,25-dihydroxyvitamin D3. Fed Proc. 1982 Jan;41(1):72–77. [PubMed] [Google Scholar]
  29. Reed K. C., Bygrave F. L. Accumulation of lanthanum by rat liver mitochondria. Biochem J. 1974 Feb;138(2):239–252. doi: 10.1042/bj1380239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sarkadi B., Szász I., Gerlóczy A., Gárdos G. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Biochim Biophys Acta. 1977 Jan 4;464(1):93–107. doi: 10.1016/0005-2736(77)90373-x. [DOI] [PubMed] [Google Scholar]
  32. Schachter D., Kowarski S. Isolation of the protein IMCal, a vitamin D-dependent membrane component of the intestinal transport mechanism for calcium. Fed Proc. 1982 Jan;41(1):84–87. [PubMed] [Google Scholar]
  33. Shlatz L., Marinetti G. V. Calcium binding to the rat liver plasma membrane. Biochim Biophys Acta. 1972 Dec 1;290(1):70–83. doi: 10.1016/0005-2736(72)90053-3. [DOI] [PubMed] [Google Scholar]
  34. Toury C., Toury R. Fixation du calcium in vitro par des vésicules de bordures en brosse isolées de jéjunum et d'ileum de rat. C R Seances Acad Sci D. 1979 Jul 9;289(2):109–112. [PubMed] [Google Scholar]
  35. Warren G. B., Toon P. A., Birdsall N. J., Lee A. G., Metcalfe J. C. Reversible lipid titrations of the activity of pure adenosine triphosphatase-lipid complexes. Biochemistry. 1974 Dec 31;13(27):5501–5507. doi: 10.1021/bi00724a008. [DOI] [PubMed] [Google Scholar]
  36. Williamson J. R., Woodrow M. L., Scarpa A. Calcium binding to cardiac sarcolemma. Recent Adv Stud Cardiac Struct Metab. 1975;5:61–71. [PubMed] [Google Scholar]
  37. Wilson P. W., Lawson D. E. Calcium binding activity by chick intestinal brush-border membrane vesicles. Pflugers Arch. 1980 Dec;389(1):69–74. doi: 10.1007/BF00587930. [DOI] [PubMed] [Google Scholar]
  38. Wilson P. W., Lawson D. E. Vitamin D-dependent phosphorylation of an intestinal protein. Nature. 1981 Feb 12;289(5798):600–602. doi: 10.1038/289600a0. [DOI] [PubMed] [Google Scholar]
  39. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES