Abstract
The Ca2+-binding properties of isolated brush-border membranes at physiological ionic strength and pH were examined by rapid Millipore filtration. A comprehensive analysis of the binding data suggested the presence of two types of Ca2+-binding sites. The high-affinity sites, Ka = (6.3 +/- 3.3) X 10(5) M-1 (mean +/- S.E.M.), bound 0.8 +/- 0.1 nmol of Ca2+/mg of protein and the low-affinity sites, Ka = (2.8 +/- 0.3) X 10(2) M-1, bound 33 +/- 3.5 nmol of Ca2+/mg of protein. The high-affinity site exhibited a selectivity for Ca2+, since high concentrations of competing bivalent cations were required to inhibit Ca2+ binding. The relative effectiveness of the competing cations (1 and 10 mM) for the high-affinity site was Mn2+ approximately equal to Sr2+ greater than Ba2+ greater than Mg2+. Data from the pH studies, treatment of the membranes with carbodi-imide and extraction of phospholipids with aqueous acetone and NH3 provided evidence that the low-affinity sites were primarily phospholipids and the high-affinity sites were either phosphoprotein or protein with associated phospholipid. Two possible roles for the high-affinity binding sites are suggested. Either high-affinity Ca2+ binding is involved with specific enzyme activities or Ca2+ transport across the luminal membrane occurs via a Ca2+ channel which contains a high-affinity Ca2+-specific binding site that may regulate the intracellular Ca2+ concentration and gating of the channel.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett J. P., McGill K. A., Warren G. B. Transbilayer disposition of the phospholipid annulus surrounding a calcium transport protein. Nature. 1978 Aug 24;274(5673):823–825. doi: 10.1038/274823a0. [DOI] [PubMed] [Google Scholar]
- Bronner F., Freund T. Intestinal CaBP: a new quantitive index of vitamin D deficiency in the rat. Am J Physiol. 1975 Sep;229(3):689–694. doi: 10.1152/ajplegacy.1975.229.3.689. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
- Chevallier J., Butow R. A. Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle. Biochemistry. 1971 Jul 6;10(14):2733–2737. doi: 10.1021/bi00790a012. [DOI] [PubMed] [Google Scholar]
- De Jonge H. R., Ghijsen W. E., Van Os C. H. Phosphorylated intermediates of Ca2+ -ATPase and alkaline phosphatase in plasma membranes from rat duodenal epithelium. Biochim Biophys Acta. 1981 Sep 21;647(1):140–149. doi: 10.1016/0005-2736(81)90302-3. [DOI] [PubMed] [Google Scholar]
- Fleischer S., Fleischer B., Stoeckenius W. Fine structure of lipid-depleted mitochondria. J Cell Biol. 1967 Jan;32(1):193–208. doi: 10.1083/jcb.32.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forstner G. G., Tanaka K., Isselbacher K. J. Lipid composition of the isolated rat intestinal microvillus membrane. Biochem J. 1968 Aug;109(1):51–59. doi: 10.1042/bj1090051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghijsen W. E., de Jong M. D., van Os C. H. Dissociation between Ca2+-ATPase and alkaline phosphatase activities in plasma membranes of rat duodenum. Biochim Biophys Acta. 1980 Jul;599(2):538–551. doi: 10.1016/0005-2736(80)90198-4. [DOI] [PubMed] [Google Scholar]
- Ghijsen W. E., van Os C. H. Ca-stimulated ATPase in brush border and basolateral membranes of rat duodenum with high affinity sites for Ca ions. Nature. 1979 Jun 28;279(5716):802–803. doi: 10.1038/279802a0. [DOI] [PubMed] [Google Scholar]
- HURST R. O. THE DETERMINATION OF NUCLEOTIDE PHOSPHORUS WITH A STANNOUS CHLORIDE-HYDRAZINE SULPHATE REAGENT. Can J Biochem. 1964 Feb;42:287–292. doi: 10.1139/o64-033. [DOI] [PubMed] [Google Scholar]
- Hemminki K. Calcium binding to brain plasma membranes. Biochim Biophys Acta. 1974 Sep 6;363(2):202–210. doi: 10.1016/0005-2736(74)90059-5. [DOI] [PubMed] [Google Scholar]
- Hendrickson H. S., Fullington J. G. Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide. Biochemistry. 1965 Aug;4(8):1599–1605. doi: 10.1021/bi00884a021. [DOI] [PubMed] [Google Scholar]
- Hesketh T. R., Smith G. A., Houslay M. D., McGill K. A., Birdsall N. J., Metcalfe J. C., Warren G. B. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry. 1976 Sep 21;15(19):4145–4151. doi: 10.1021/bi00664a002. [DOI] [PubMed] [Google Scholar]
- Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kowarski S., Schachter D. Intestinal membrane calcium-binding protein. Vitamin D-dependent membrane component of the intestinal calcium transport mechanism. J Biol Chem. 1980 Nov 25;255(22):10834–10840. [PubMed] [Google Scholar]
- LASZLO D., EKSTEIN D. M., LEWIN R., STERN K. G. Biological studies on stable and radio-active rare earth compounds. I. On the distribution of lanthanum in the mammalian organism. J Natl Cancer Inst. 1952 Oct;13(2):559–573. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lever J. E. The use of membrane vesicles in transport studies. CRC Crit Rev Biochem. 1980 Jan;7(3):187–246. doi: 10.3109/10409238009105462. [DOI] [PubMed] [Google Scholar]
- Li S. T., Katz E. P. An electrostatic model for collagen fibrils. The interaction of reconstituted collagen with Ca++, Na+, and Cl-. Biopolymers. 1976 Aug;15(8):1439–1460. doi: 10.1002/bip.1976.360150802. [DOI] [PubMed] [Google Scholar]
- Li S. T., Katz E. P. On the state of anionic groups of demineralized matrices of bone and dentine. Calcif Tissue Res. 1977 Feb 11;22(3):275–284. doi: 10.1007/BF02010366. [DOI] [PubMed] [Google Scholar]
- Li S., Golub E., Katz E. P. Electrostatic side chain complementarity in collagen fibrils. J Mol Biol. 1975 Nov 15;98(4):835–839. doi: 10.1016/s0022-2836(75)80015-5. [DOI] [PubMed] [Google Scholar]
- McDonald J. M., Bruns D. E., Jarett L. Characterization of calcium binding to adipocyte plasma membranes. J Biol Chem. 1976 Sep 10;251(17):5345–5351. [PubMed] [Google Scholar]
- Miller A., 3rd, Bronner F. Calcium uptake in isolated brush-border vesicles from rat small intestine. Biochem J. 1981 May 15;196(2):391–401. doi: 10.1042/bj1960391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A., 3rd, Ueng T. H., Bronner F. Isolation of a vitamin D-dependent, calcium-binding protein from brush borders of rat duodenal mucosa. FEBS Lett. 1979 Jul 15;103(2):319–322. doi: 10.1016/0014-5793(79)81353-8. [DOI] [PubMed] [Google Scholar]
- Norman A. W., Putkey J. A., Nemere I. Intestinal calcium transport: pleiotropic effects mediated by vitamin D. Fed Proc. 1982 Jan;41(1):78–83. [PubMed] [Google Scholar]
- Palmer R. F., Posey V. A. Calcium and adenosine triphosphate binding to renal membranes. J Gen Physiol. 1970 Jan;55(1):89–103. doi: 10.1085/jgp.55.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen H., Matsumoto T., Fontaine O., Goodman D. B. Role of changes in membrane lipid structure in the action of 1,25-dihydroxyvitamin D3. Fed Proc. 1982 Jan;41(1):72–77. [PubMed] [Google Scholar]
- Reed K. C., Bygrave F. L. Accumulation of lanthanum by rat liver mitochondria. Biochem J. 1974 Feb;138(2):239–252. doi: 10.1042/bj1380239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkadi B., Szász I., Gerlóczy A., Gárdos G. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Biochim Biophys Acta. 1977 Jan 4;464(1):93–107. doi: 10.1016/0005-2736(77)90373-x. [DOI] [PubMed] [Google Scholar]
- Schachter D., Kowarski S. Isolation of the protein IMCal, a vitamin D-dependent membrane component of the intestinal transport mechanism for calcium. Fed Proc. 1982 Jan;41(1):84–87. [PubMed] [Google Scholar]
- Shlatz L., Marinetti G. V. Calcium binding to the rat liver plasma membrane. Biochim Biophys Acta. 1972 Dec 1;290(1):70–83. doi: 10.1016/0005-2736(72)90053-3. [DOI] [PubMed] [Google Scholar]
- Toury C., Toury R. Fixation du calcium in vitro par des vésicules de bordures en brosse isolées de jéjunum et d'ileum de rat. C R Seances Acad Sci D. 1979 Jul 9;289(2):109–112. [PubMed] [Google Scholar]
- Warren G. B., Toon P. A., Birdsall N. J., Lee A. G., Metcalfe J. C. Reversible lipid titrations of the activity of pure adenosine triphosphatase-lipid complexes. Biochemistry. 1974 Dec 31;13(27):5501–5507. doi: 10.1021/bi00724a008. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Woodrow M. L., Scarpa A. Calcium binding to cardiac sarcolemma. Recent Adv Stud Cardiac Struct Metab. 1975;5:61–71. [PubMed] [Google Scholar]
- Wilson P. W., Lawson D. E. Calcium binding activity by chick intestinal brush-border membrane vesicles. Pflugers Arch. 1980 Dec;389(1):69–74. doi: 10.1007/BF00587930. [DOI] [PubMed] [Google Scholar]
- Wilson P. W., Lawson D. E. Vitamin D-dependent phosphorylation of an intestinal protein. Nature. 1981 Feb 12;289(5798):600–602. doi: 10.1038/289600a0. [DOI] [PubMed] [Google Scholar]
- Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
