Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 15;208(3):789–794. doi: 10.1042/bj2080789

Parotid microsomal Ca2+ transport. Subcellular localization and characterization.

P Kanagasuntheram, T S Teo
PMCID: PMC1154032  PMID: 6925974

Abstract

Rat parotid gland homogenates were fractionated into mitochondrial, heavy microsomal and light microsomal fractions by differential centrifugation. ATP-dependent 45Ca2+ uptake by the subcellular fractions paralleled the distribution of NADPH-cytochrome c reductase, an enzyme associated with the endoplasmic reticulum. The highest rate of Ca2+ uptake was found in the heavy microsomal fraction. Ca2+ uptake by this fraction was dependent on the presence of ATP and was sustained at a linear rate by 5 mM-oxalate. Inhibitors of mitochondrial Ca2+ transport had no effect on the rate of Ca2+ uptake. Na+ and K+ stimulated Ca2+ uptake. At optimal concentrations. Na+ stimulated Ca2+ uptake by 120% and K+ stimulated Ca2+ uptake by 260%. Decreasing the pH from 7.4 to 6.8 had little effect on Ca2+ uptake. The Km for Ca2+ uptake was 3.7 microM free Ca2+ and 0.19 mM-ATP. Vanadate inhibited Ca2+ uptake; 60 microM-vanadate inhibited the rate of Ca2+ accumulation by 50%. It is concluded that the ATP-dependent Ca2+ transport system is located on the endoplasmic reticulum and may play a role in maintaining intracellular levels of free Ca2+ within a narrow range of concentration.

Full text

PDF
789

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonis D., Rossignol B. Effect of sodium and potassium on ATP-dependent Ca2+ uptake in rat parotid microsomes. FEBS Lett. 1982 Jan 11;137(1):63–66. doi: 10.1016/0014-5793(82)80315-3. [DOI] [PubMed] [Google Scholar]
  2. Bruns D. E., McDonald J. M., Jarett L. Energy-dependent calcium transport in endoplasmic reticulum of adipocytes. J Biol Chem. 1976 Nov 25;251(22):7191–7197. [PubMed] [Google Scholar]
  3. Butcher F. R., Putney J. W., Jr Regulation of parotid gland function by cyclic nucleotides and calcium. Adv Cyclic Nucleotide Res. 1980;13:215–249. [PubMed] [Google Scholar]
  4. Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
  5. Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
  6. Dormer R. L., Ashcroft S. J. Studies on the role of calcium ions in the stimulation by adrenaline of amylase release from rat parotid. Biochem J. 1974 Dec;144(3):543–550. doi: 10.1042/bj1440543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feinstein H., Schramm M. Energy production in rat parotid gland. Relation tonzyme secretion and effects of caium. Eur J Biochem. 1970 Mar 1;13(1):158–163. doi: 10.1111/j.1432-1033.1970.tb00912.x. [DOI] [PubMed] [Google Scholar]
  8. GREEN D. E., MII S., KOHOUT P. M. Studies on the terminal electron transport system. I. Succinic dehydrogenase. J Biol Chem. 1955 Dec;217(2):551–567. [PubMed] [Google Scholar]
  9. Jones L. R., Besch H. R., Jr, Watanabe A. M. Monovalent cation stimulation of Ca2+ uptake by cardiac membrane vesicles. J Biol Chem. 1977 May 25;252(10):3315–3323. [PubMed] [Google Scholar]
  10. Kanagasuntheram P., Randle P. J. Calcium metabolism and amylase release in rat parotid acinar cells. Biochem J. 1976 Dec 15;160(3):547–564. doi: 10.1042/bj1600547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katz A. M., Repke D. I., Upshaw J. E., Polascik M. A. Characterization of dog cardiac microsomes. Use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, (Na+ + K+)--activated ATPase and mitochondrial fragments. Biochim Biophys Acta. 1970 Jun 30;205(3):473–490. doi: 10.1016/0005-2728(70)90113-1. [DOI] [PubMed] [Google Scholar]
  12. Laychock S. G., Landon E. J., Hardman J. G. The effect of adrenocorticotropin and nucleotides on Ca2+ uptake in adrenal cortical microsomal vesicles. Endocrinology. 1978 Dec;103(6):2198–2206. doi: 10.1210/endo-103-6-2198. [DOI] [PubMed] [Google Scholar]
  13. Mangos J. A., McSherry N. R., Barber T. Dispersed rat parotid acinar cells. III. Characterization of cholinergic receptors. Am J Physiol. 1975 Sep;229(3):566–569. doi: 10.1152/ajplegacy.1975.229.3.566. [DOI] [PubMed] [Google Scholar]
  14. Mangos J. A., McSherry N. R., Butcher F., Irwin K., Barber T. Dispersed rat parotid acinar cells. I. Morphological and functional characterization. Am J Physiol. 1975 Sep;229(3):553–559. doi: 10.1152/ajplegacy.1975.229.3.553. [DOI] [PubMed] [Google Scholar]
  15. Miller B. E., Nelson D. L. Calcium fluxes in isolated acinar cells from rat parotid. Effect of adrenergic and cholinergic stimulation. J Biol Chem. 1977 Jun 10;252(11):3629–3636. [PubMed] [Google Scholar]
  16. Moore L., Chen T., Knapp H. R., Jr, Landon E. J. Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem. 1975 Jun 25;250(12):4562–4568. [PubMed] [Google Scholar]
  17. Pershadsingh H. A., Landt M., McDonald J. M. Calmodulin-sensitive ATP-dependent Ca2+ transport across adipocyte plasma membranes. J Biol Chem. 1980 Oct 10;255(19):8983–8986. [PubMed] [Google Scholar]
  18. Pershadsingh H. A., McDaniel M. L., Landt M., Bry C. G., Lacy P. E., McDonald J. M. Ca2+-activated ATPase and ATP-dependent calmodulin-stimulated Ca2+ transport in islet cell plasma membrane. Nature. 1980 Dec 4;288(5790):492–495. doi: 10.1038/288492a0. [DOI] [PubMed] [Google Scholar]
  19. Ponnappa B. C., Dormer R. L., Williams J. A. Characterization of an ATP-dependent Ca2+ uptake system in mouse pancreatic microsomes. Am J Physiol. 1981 Feb;240(2):G122–G129. doi: 10.1152/ajpgi.1981.240.2.G122. [DOI] [PubMed] [Google Scholar]
  20. Putney J. W., Jr, VanDeWalle C. M., Leslie B. A. Receptor control of calcium influx in parotid acinar cells. Mol Pharmacol. 1978 Nov;14(6):1046–1053. [PubMed] [Google Scholar]
  21. Schuurmans Stekhoven F., Bonting S. L. Transport adenosine triphosphatases: properties and functions. Physiol Rev. 1981 Jan;61(1):1–76. doi: 10.1152/physrev.1981.61.1.1. [DOI] [PubMed] [Google Scholar]
  22. Selinger Z., Naim E., Lasser M. ATP-dependent calcium uptake by microsomal preparations from rat parotid and submaxillary glands. Biochim Biophys Acta. 1970 Apr 21;203(2):326–334. doi: 10.1016/0005-2736(70)90147-1. [DOI] [PubMed] [Google Scholar]
  23. Strobel H. W., Dignam J. D. Purification and properties of NADPH-cytochrome P-450 reductase. Methods Enzymol. 1978;52:89–96. doi: 10.1016/s0076-6879(78)52009-0. [DOI] [PubMed] [Google Scholar]
  24. Widnell C. C., Unkeless J. C. Partial purification of a lipoprotein with 5'-nucleotidase activity from membranes of rat liver cells. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1050–1057. doi: 10.1073/pnas.61.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES