Abstract
The highest activity of glycerophosphocholine phosphodiesterase (EC 3.1.4.2) in subcellular fractions of rat forebrain was found in the microsomal fraction though significant amounts were found in fractions containing plasma membranes. With the use of Ca2+/EGTA and Ca2+/EDTA buffers it was shown that very low concentrations of free Ca2+ (EC50approx. 10−9m) could activate the enzyme.
Full text
PDF![845](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669e/1154040/57a45233570f/biochemj00361-0315.png)
![846](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669e/1154040/57621c2de1ed/biochemj00361-0316.png)
![847](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669e/1154040/f0aabd5f5553/biochemj00361-0317.png)
![848](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669e/1154040/29b65e28a511/biochemj00361-0318.png)
![849](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669e/1154040/5f092aa7ad00/biochemj00361-0319.png)
![850](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669e/1154040/048101d61834/biochemj00361-0320.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abra R. M., Quinn P. J. A novel pathway for phosphatidylcholine catabolism in rat brain homogenates. Biochim Biophys Acta. 1975 Mar 24;380(3):436–441. doi: 10.1016/0005-2760(75)90111-3. [DOI] [PubMed] [Google Scholar]
- Allan D., Michell R. H. A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes. Biochim Biophys Acta. 1978 Apr 4;508(2):277–286. doi: 10.1016/0005-2736(78)90330-9. [DOI] [PubMed] [Google Scholar]
- Baldwin J. J., Cornatzer W. E. Rat kidney glycerylphosphorylcholine diesterase. Biochim Biophys Acta. 1968 Oct 22;164(2):195–204. doi: 10.1016/0005-2760(68)90146-x. [DOI] [PubMed] [Google Scholar]
- Baldwin J. J., Lanes P., Cornatzer W. E. Glycerylphosphorylcholine diesterase: effects of metal-binding agents. Arch Biochem Biophys. 1969 Sep;133(2):224–232. doi: 10.1016/0003-9861(69)90449-4. [DOI] [PubMed] [Google Scholar]
- DAWSON R. M. Liver glycerylphosphorylcholine diesterase. Biochem J. 1956 Apr;62(4):689–693. doi: 10.1042/bj0620689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson R. M., Hemington N. A phosphodiesterase in rat kidney cortex that hydrolyses glycerylphosphorylinositol. Biochem J. 1977 Feb 15;162(2):241–245. doi: 10.1042/bj1620241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downes C. P., Michell R. H. The control by Ca2+ of the polyphosphoinositide phosphodiesterase and the Ca2+-pump ATPase in human erythrocytes. Biochem J. 1982 Jan 15;202(1):53–58. doi: 10.1042/bj2020053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dross K. Effects of di-isopropylfluorophosphate on the metabolism of choline and phosphatidylcholine in rat brain. J Neurochem. 1975 Apr;24(4):701–706. [PubMed] [Google Scholar]
- Illingworth D. R., Portman O. W. Formation of choline from phospholipid precursors: a comparison of the enzymes involved in phospholipid catabolism in the brain of the rhesus monkey. Physiol Chem Phys. 1973;5(5):365–373. [PubMed] [Google Scholar]
- Illingworth D. R., Portman O. W. The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys. Biochem J. 1972 Nov;130(2):557–567. doi: 10.1042/bj1300557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jope R. S., Jenden D. J. Choline and phospholipid metabolism and the synthesis of acetylcholine in rat brain. J Neurosci Res. 1979;4(1):69–82. doi: 10.1002/jnr.490040110. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lloyd-Davies K. A., Michell R. H., Coleman R. Glycerylphosphorylcholine phosphodiesterase in rat liver. Subcellular distribution and localization in plasma membranes. Biochem J. 1972 Apr;127(2):357–368. doi: 10.1042/bj1270357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann S. P. Distribution of glycerophosphorylcholine diesterase in rat brain. Experientia. 1975 Nov 15;31(11):1256–1258. doi: 10.1007/BF01945764. [DOI] [PubMed] [Google Scholar]
- Owen J. D. The determination of the stability constant for calcium-EGTA. Biochim Biophys Acta. 1976 Nov 18;451(1):321–325. doi: 10.1016/0304-4165(76)90282-8. [DOI] [PubMed] [Google Scholar]
- RAAFLAUB J. Applications of metal buffers and metal indicators in biochemistry. Methods Biochem Anal. 1956;3:301–325. doi: 10.1002/9780470110195.ch10. [DOI] [PubMed] [Google Scholar]
- SCHMIDT G., HECHT L., FALLOT P., GREENBAUM L., THANNHAUSER S. J. The amounts of glycerylphosphorylcholine in some mammalian tissues. J Biol Chem. 1952 May;197(2):601–609. [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Spanner S., Ansell G. B. Choline kinase and ethanolamine kinase activity in the cytosol of nerve endings from rat forebrain. Biochem J. 1979 Mar 15;178(3):753–760. doi: 10.1042/bj1780753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLACE J. C., WHITE I. G. STUDIES OF GLYCERYLPHOSPHORYLCHOLINE DIESTERASE IN THE FEMALE REPRODUCTIVE TRACT. J Reprod Fertil. 1965 Apr;9:163–176. doi: 10.1530/jrf.0.0090163. [DOI] [PubMed] [Google Scholar]
- WEBSTER G. R., MARPLES E. A., THOMPSON R. H. Glycerylphosphorylcholine diesterase activity of nervous tissue. Biochem J. 1957 Feb;65(2):374–377. doi: 10.1042/bj0650374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J. H., Sharma R. K., Huang C. Y., Chau V., Chock P. B. On the mechanism of activation of cyclic mucleotide phosphodiesterase by calmodulin. Ann N Y Acad Sci. 1980;356:190–204. doi: 10.1111/j.1749-6632.1980.tb29611.x. [DOI] [PubMed] [Google Scholar]