Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jan 1;209(1):107–115. doi: 10.1042/bj2090107

Covalent cross-linking of the bovine somatotropin dimer. Effects on growth-promoting, receptor-binding and immunological activities and preliminary characterization of the self-association.

H N Fernández, J M Delfino
PMCID: PMC1154061  PMID: 6303298

Abstract

Bovine somatotropin, at pH 8.5 in 0.02 M-Bicine [NN-bis-(2-hydroxyethyl)glycine]/0.09M-NaCl, showed by frontal analysis the characteristics of a rapid monomer-dimer equilibrium whose dissociation constant was estimated to be 6.6 X 10(-6)M. Reaction of the hormone with dimethyl suberimidate lead to covalent cross-linking of the dimeric species. Under the conditions chosen (0.4 mg of bifunctional imidate and 1 mg of protein/ml at room temperature for 1 h) the cross-linked dimers accounted for 26% of the total protein, and these were isolated by molecular sieving in 0.29M-NH3/0.12M-NaCl. Covalent stabilization greatly diminished the growth-promoting activity and the ability to interact with somatogenic sites in both rat liver in vivo and rabbit liver microsomal fractions. Evidence indicating a non-critical role for amino groups involved in the covalent cross-linking was provided by a nearly equivalent derivative obtained after reaction with 3,3'-dithiobispropionimidate, which had substantial hormonal activity upon cleavage of the disulphide links. Conversely, immunological reactivity as demonstrated by radioimmunoassay was not affected by cross-linking. Details of the least-squares procedure employed to evaluate the self-association equilibrium constant has been deposited as Supplement SUP 50115 (7 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem.J. (1981) 193,5.

Full text

PDF
107

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERS G. K., THOMPSON T. E. DETERMINATION OF STOICHIOMETRY AND EQUILIBRIUM CONSTANTS FOR REVERSIBLY ASSOCIATING SYSTEMS BY MOLECULAR SIEVE CHROMATOGRAPHY. Proc Natl Acad Sci U S A. 1965 Feb;53:342–349. doi: 10.1073/pnas.53.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ATLAS S. M., FARBER E. On the molecular weight of cytochrome c from mammalian heart muscle. J Biol Chem. 1956 Mar;219(1):31–37. [PubMed] [Google Scholar]
  3. Bewley T. A., Li C. H. Molecular weight and circular dichroism studies of bovine and ovine pituitary growth hormones. Biochemistry. 1972 Feb 29;11(5):927–931. doi: 10.1021/bi00755a036. [DOI] [PubMed] [Google Scholar]
  4. CREETH J. M. The use of the Gouy diffusiometer with dilute protein solutions; an assessment of the accuracy of the method. Biochem J. 1952 Apr;51(1):10–17. doi: 10.1042/bj0510010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  6. Cascone O., Biscoglio de Jimenez Bonino M. J., Santomé J. A. Oxidation of methionine residues in bovine growth hormone by chloramine-T. Int J Pept Protein Res. 1980 Oct;16(4):299–305. doi: 10.1111/j.1399-3011.1980.tb02590.x. [DOI] [PubMed] [Google Scholar]
  7. DELLACHA J. M., SONENBERG M. PURIFICATION OF BOVINE GROWTH HORMONE. J Biol Chem. 1964 May;239:1515–1520. [PubMed] [Google Scholar]
  8. Dellacha J. M., Enero M. A., Paladini A. C. Physicochemical behaviour and biological activity of bovine growth hormone in acidic solution. Biochim Biophys Acta. 1968 Sep 10;168(1):95–105. doi: 10.1016/0005-2795(68)90238-9. [DOI] [PubMed] [Google Scholar]
  9. Edelhoch H., Condliffe P. G., Lippoldt R. E., Burger H. G. The properties of bovine growth hormone. 3. Behavior in alkaline solution. J Biol Chem. 1966 Nov 25;241(22):5205–5212. [PubMed] [Google Scholar]
  10. GOSTING L. J. Measurement and interpretation of diffusion coefficients of proteins. Adv Protein Chem. 1956;11:429–554. doi: 10.1016/s0065-3233(08)60425-8. [DOI] [PubMed] [Google Scholar]
  11. Gráf L., Li C. H., Bewley T. A. Selective reduction and alkylation of the COOH-terminal disulfide bridge in bovine growth hormone. Int J Pept Protein Res. 1975;7(6):467–473. doi: 10.1111/j.1399-3011.1975.tb02467.x. [DOI] [PubMed] [Google Scholar]
  12. Hsu Chen C. J., Sonenberg M. Conformation studies of biologically active fragments of bovine growth hormone. Biochemistry. 1977 May 17;16(10):2110–2118. doi: 10.1021/bi00629a010. [DOI] [PubMed] [Google Scholar]
  13. Li C. H., Bewley T. A. Human pituitary growth hormone: restoration of full biological activity by noncovalent interaction of two fragments of the hormone. Proc Natl Acad Sci U S A. 1976 May;73(5):1476–1479. doi: 10.1073/pnas.73.5.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li C. H., Gráf L. Human pituitary growth hormone: isolation and properties of two biologically active fragments from plasmin digests. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1197–1201. doi: 10.1073/pnas.71.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martenson R. E. The use of gel filtration to follow conformational changes in proteins. Conformational flexibility of bovine myelin basic protein. J Biol Chem. 1978 Dec 25;253(24):8887–8893. [PubMed] [Google Scholar]
  16. Mattera R., Turyn D., Fernandez H. N., Dellacha J. M. Structural characterization of iodinated bovine growth hormone. Int J Pept Protein Res. 1982 Feb;19(2):172–180. doi: 10.1111/j.1399-3011.1982.tb02606.x. [DOI] [PubMed] [Google Scholar]
  17. Mendez E., Gavilanes J. G. Fluorometric detection of peptides after column chromatography or on paper: o-phthalaldehyde and fluorescamine. Anal Biochem. 1976 May 7;72:473–479. doi: 10.1016/0003-2697(76)90556-x. [DOI] [PubMed] [Google Scholar]
  18. Mills J. B., Ashworth R. B., Wilhelmi A. E., Hartree A. S. Improved method for the extraction and purification of human growth hormone. J Clin Endocrinol Metab. 1969 Nov;29(11):1456–1459. doi: 10.1210/jcem-29-11-1456. [DOI] [PubMed] [Google Scholar]
  19. Peña C., Poskus E., Paladini A. C. A relevant antigenic site in human growth hormone localized in sequence 98-128. Mol Immunol. 1980 Dec;17(12):1487–1491. doi: 10.1016/0161-5890(80)90174-1. [DOI] [PubMed] [Google Scholar]
  20. Posner B. I., Kelly P. A., Shiu R. P., Friesen H. G. Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variation and characterization. Endocrinology. 1974 Aug;95(2):521–531. doi: 10.1210/endo-95-2-521. [DOI] [PubMed] [Google Scholar]
  21. Rodbard D., Frazier G. R. Statistical analysis of radioligand assay data. Methods Enzymol. 1975;37:3–22. doi: 10.1016/s0076-6879(75)37003-1. [DOI] [PubMed] [Google Scholar]
  22. Roth J. Methods for assessing immunologic and biologic properties of iodinated peptide hormones. Methods Enzymol. 1975;37:223–233. doi: 10.1016/s0076-6879(75)37018-3. [DOI] [PubMed] [Google Scholar]
  23. Turyn D., Dellacha J. M. Specific binding of iodinated growth hormone to rat liver in vivo. Endocrinology. 1978 Oct;103(4):1190–1195. doi: 10.1210/endo-103-4-1190. [DOI] [PubMed] [Google Scholar]
  24. Wang D., Wilson G., Moore S. Preparation of cross-linked dimers of pancreatic ribonuclease. Biochemistry. 1976 Feb 10;15(3):660–665. doi: 10.1021/bi00648a033. [DOI] [PubMed] [Google Scholar]
  25. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES