Abstract
Goblet-cell mucin of rat small intestine was purified from mucosal scrapings by using centrifugation, Sepharose 4B and Sepharose 2B chromatography. The mucin was applied in low concentrations (1 microgram/track) to slab gels containing 0.5% agarose/2% (w/v) polyacrylamide, and bands were detected after electrophoresis by silver stain or by fluorography of 3H-labelled mucin. Before reduction the mucin contained three distinct components: a polymeric species at the top of the gel and two large glycoproteins of higher mobility. After reduction, the polymer disappeared, the two glycoproteins remained unchanged, and two glycopeptide bands of higher mobility appeared. In addition, a non-glycosylated, heavily stained peptide of mol.wt. 118000 was detected. The individual mucin components were partially separated on Sepharose 2B, 0.2M-NaCl/1% sodium dodecyl sulphate being used as eluant. Individual amino acid and carbohydrate analyses suggested that the glycosylated components, despite their differences in size, had identical profiles. The 118000-mol.wt. peptide had a very different amino acid profile, with much less serine, threonine and proline. Glycine and aspartic and glutamic acids comprised 34% of the total amino acids. Thus the 'native' mucin is a heterogeneous structure containing at least two non-covalently associated glycoproteins plus polymeric material. The latter is stabilized by disulphide bonds and consists of several glycopeptides of different size as well as a 'link' peptide of mol.wt. 118000.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen A. Structure of gastrointestinal mucus glycoproteins and the viscous and gel-forming properties of mucus. Br Med Bull. 1978 Jan;34(1):28–33. [PubMed] [Google Scholar]
- Creeth J. M., Bhaskar K. R., Horton J. R., Das I., Lopez-Vidriero M. T., Reid L. The separation and characterization of bronchial glycoproteins by density-gradient methods. Biochem J. 1977 Dec 1;167(3):557–569. doi: 10.1042/bj1670557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forstner J. F., Jabbal I., Forstner G. G. Goblet cell mucin of rat small intestine. Chemical and physical characterization. Can J Biochem. 1973 Aug;51(8):1154–1166. doi: 10.1139/o73-152. [DOI] [PubMed] [Google Scholar]
- Forstner J. F., Jabbal I., Qureshi R., Kells D. I., Forstner G. G. The role of disulphide bonds in human intestinal mucin. Biochem J. 1979 Sep 1;181(3):725–732. doi: 10.1042/bj1810725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forstner J. F., Ofosu F., Forstner G. G. Radioimmunoassay of intestinal goblet cell mucin. Anal Biochem. 1977 Dec;83(2):657–665. doi: 10.1016/0003-2697(77)90070-7. [DOI] [PubMed] [Google Scholar]
- Gahmberg C. G., Hakomori S. I. External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes. J Biol Chem. 1973 Jun 25;248(12):4311–4317. [PubMed] [Google Scholar]
- Gold D. V., Shochat D., Miller F. Protease digestion of colonic mucin. Evidence for the existence of two immunochemically distinct mucins. J Biol Chem. 1981 Jun 25;256(12):6354–6358. [PubMed] [Google Scholar]
- Hatcher V. B., Schwarzmann G. O., Jeanloz R. W., McArthur J. W. Purification, properties, and partial structure elucidation of a high-molecular-weight glycoprotein from cervical mucus of the bonnet monkey (Macaca radiata). Biochemistry. 1977 Apr 5;16(7):1518–1524. doi: 10.1021/bi00626a042. [DOI] [PubMed] [Google Scholar]
- Henderson L. E., Oroszlan S., Konigsberg W. A micromethod for complete removal of dodecyl sulfate from proteins by ion-pair extraction. Anal Biochem. 1979 Feb;93(1):153–157. [PubMed] [Google Scholar]
- Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
- Jabbal I., Forstner G., Forstner J., Kells D. I. Sedimentation velocity studies on microgram quantities of rat intestinal goblet cell mucin. Anal Biochem. 1975 Dec;69(2):558–571. doi: 10.1016/0003-2697(75)90161-x. [DOI] [PubMed] [Google Scholar]
- Jabbal I., Kells D. I., Forstner G., Forstner J. Human intestinal goblet cell mucin. Can J Biochem. 1976 Aug;54(8):707–716. doi: 10.1139/o76-102. [DOI] [PubMed] [Google Scholar]
- Mantle M., Allen A. A colorimetric assay for glycoproteins based on the periodic acid/Schiff stain [proceedings]. Biochem Soc Trans. 1978;6(3):607–609. doi: 10.1042/bst0060607. [DOI] [PubMed] [Google Scholar]
- Mantle M., Mantle D., Allen A. Polymeric structure of pig small-intestinal mucus glycoprotein. Dissociation by proteolysis or by reduction of disulphide bridges. Biochem J. 1981 Apr 1;195(1):277–285. doi: 10.1042/bj1950277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer R. A. Comparison of structural glycoproteins from mucus of different sources. Biochim Biophys Acta. 1977 Aug 23;493(2):272–282. doi: 10.1016/0005-2795(77)90183-0. [DOI] [PubMed] [Google Scholar]
- Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
- Pearson J. P., Allen A., Parry S. A 70000-molecular-weight protein isolated from purified pig gastric mucus glycoprotein by reduction of disulphide bridges and its implication in the polymeric structure. Biochem J. 1981 Jul 1;197(1):155–162. doi: 10.1042/bj1970155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson J., Allen A., Venables C. Gastric mucus: isolation and polymeric structure of the undegraded glycoprotein: its breakdown by pepsin. Gastroenterology. 1980 Apr;78(4):709–715. [PubMed] [Google Scholar]
- Roberts G. P. Structural studies on the glycoproteins from bovine cervical mucus. Biochem J. 1978 Sep 1;173(3):941–947. doi: 10.1042/bj1730941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scawen M., Allen A. The action of proteolytic enzymes on the glycoprotein from pig gastric mucus. Biochem J. 1977 May 1;163(2):363–368. doi: 10.1042/bj1630363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrager J., Oates M. D. The isolation and partial characterisation of the principal gastric glycoprotein of 'visible' mucus. Digestion. 1971;4(1):1–12. doi: 10.1159/000197091. [DOI] [PubMed] [Google Scholar]
- Switzer R. C., 3rd, Merril C. R., Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979 Sep 15;98(1):231–237. doi: 10.1016/0003-2697(79)90732-2. [DOI] [PubMed] [Google Scholar]
- Zanetta J. P., Breckenridge W. C., Vincendon G. Analysis of monosaccharides by gas-liquid chromatography of the O-methyl glycosides as trifluoroacetate derivatives. Application to glycoproteins and glycolipids. J Chromatogr. 1972 Jul 5;69(2):291–304. doi: 10.1016/s0021-9673(00)92897-8. [DOI] [PubMed] [Google Scholar]



