Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jan 1;209(1):135–142. doi: 10.1042/bj2090135

Relations between high-affinity binding sites for L-tryptophan, diazepam, salicylate and Phenol Red on human serum albumin.

U Kragh-Hansen
PMCID: PMC1154064  PMID: 6847607

Abstract

Binding of L-tryptophan, diazepam, salicylate and Phenol Red to defatted human serum albumin was studied by ultrafiltration at pH 7.0. All ligands bind to one high-affinity binding site with association constants of the order of 10(4)-10(5)M-1. The number of secondary binding sites was found to vary from zero to five, with association constants about 10(3)M-1. Competitive binding studies with different pairs of the ligands were performed. Binding of both ligands was determined simultaneously. L-Tryptophan and diazepam were found to compete for a common high-affinity binding site on albumin. The following combinations of ligands do not bind competitively to albumin: L-tryptophan-Phenol Red, L-tryptophan-salicylate and Phenol Red-salicylate. On the other hand, high-affinity bindings of the three ligands do not take place independently but in such a way that binding of one of the ligands results in a decrease in binding of the other ligands. The decreases in binding are reciprocal and can be accounted for by introducing a coupling constant. The magnitude of the constant is dependent on the ligands being bound. In the present study, the mutual decrease in binding was more pronounced with L-tryptophan-salicylate and Phenol Red-salicylate than with L-tryptophan-Phenol Red.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brodersen R. Competitive binding of bilirubin and drugs to human serum albumin studied by enzymatic oxidation. J Clin Invest. 1974 Dec;54(6):1353–1364. doi: 10.1172/JCI107882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brodersen R., Sjödin T., Sjöholm I. Independent binding of ligands to human serum albumin. J Biol Chem. 1977 Jul 25;252(14):5067–5072. [PubMed] [Google Scholar]
  3. Brown K. F., Crooks M. J. Displacement of tolbutamide, glibencalmide and chlorpropamide from serum albumin by anionic drugs. Biochem Pharmacol. 1976 May 15;25(10):1175–1178. doi: 10.1016/0006-2952(76)90365-8. [DOI] [PubMed] [Google Scholar]
  4. Bruderlein H., Bernstein J. An investigation of the L-tryptophan binding site on serum albumin, using cyclic analogs and fluorescent probes. J Biol Chem. 1979 Nov 25;254(22):11570–11576. [PubMed] [Google Scholar]
  5. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  6. Fehske K. J., Müller W. E., Wollert U. A highly reactive tyrosine residue as part of the indole and benzodiazepine binding site of human serum albumin. Biochim Biophys Acta. 1979 Apr 25;577(2):346–359. doi: 10.1016/0005-2795(79)90038-2. [DOI] [PubMed] [Google Scholar]
  7. Fehske K. J., Müller W. E., Wollert U. The location of drug binding sites in human serum albumin. Biochem Pharmacol. 1981 Apr 1;30(7):687–692. doi: 10.1016/0006-2952(81)90151-9. [DOI] [PubMed] [Google Scholar]
  8. Hultmark D., Borg K. O., Elofsson R., Palmer L. Interaction between salicylic acid and indomethacin in binding to human serum albumin. Acta Pharm Suec. 1975;12(3):259–276. [PubMed] [Google Scholar]
  9. Keresztes-Nagy S., Mais R. F., Oester Y. T., Zaroslinski J. F. Protein binding methodology: comparison of equilibrium dialysis and frontal analysis chromatography in the study of salicylate binding. Anal Biochem. 1972 Jul;48(1):80–89. doi: 10.1016/0003-2697(72)90172-8. [DOI] [PubMed] [Google Scholar]
  10. Kober A., Ekman B., Sjöholm I. Direct and indirect determination of binding constants of drug-protein complexes with microparticles. J Pharm Sci. 1978 Jan;67(1):107–109. doi: 10.1002/jps.2600670127. [DOI] [PubMed] [Google Scholar]
  11. Kragh-Hansen U., Moller J. V., Sheikh M. I. A spectrophotometric micromethod for the determination of binding of phenol red to plasma proteins of various species. Pflugers Arch. 1972;337(2):163–176. doi: 10.1007/BF00587838. [DOI] [PubMed] [Google Scholar]
  12. McMENAMY R. H., ONCLEY J. L. The specific binding of L-tryptophan to serum albumin. J Biol Chem. 1958 Dec;233(6):1436–1447. [PubMed] [Google Scholar]
  13. Müller W. E., Wollert U. Benzodiazepines: specific competitors for the binding of L-tryptophan to human serum albumin. Naunyn Schmiedebergs Arch Pharmacol. 1975;288(1):17–27. doi: 10.1007/BF00501811. [DOI] [PubMed] [Google Scholar]
  14. Müller W., Wollert U. Characterization of the binding of benzodiazepines to human serum albumin. Naunyn Schmiedebergs Arch Pharmacol. 1973;280(3):229–237. doi: 10.1007/BF00501348. [DOI] [PubMed] [Google Scholar]
  15. Rudman D., Bixler T. J., 2nd, Del Rio A. E. Effect of free fatty acids on binding of drugs by bovine serum albumin, by human serum albumin and by rabbit serum. J Pharmacol Exp Ther. 1971 Feb;176(2):261–272. [PubMed] [Google Scholar]
  16. Sjödin T., Roosdorp N., Sjöholm I. Studies on the binding of benzodiazepines to human serum albumin by circular dichroism measurements. Biochem Pharmacol. 1976 Oct 1;25(19):2131–2140. doi: 10.1016/0006-2952(76)90124-6. [DOI] [PubMed] [Google Scholar]
  17. Sjöholm I., Ekman B., Kober A., Ljungstedt-Påhlman I., Seiving B., Sjödin T. Binding of drugs to human serum albumin:XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Mol Pharmacol. 1979 Nov;16(3):767–777. [PubMed] [Google Scholar]
  18. TABACHNICK M. THYROXINE-PROTEIN INTERACTIONS. 3. EFFECT OF FATTY ACIDS, 2,4-DINITROPHENOL AND OTHER ANIONIC COMPOUNDS ON THE BINDING OF THYROXINE BY HUMAN SERUM ALBUMIN. Arch Biochem Biophys. 1964 Jul 20;106:415–421. doi: 10.1016/0003-9861(64)90209-7. [DOI] [PubMed] [Google Scholar]
  19. TRITSCH G. L., TRITSCH N. E. Thyroxine binding. II. The nature of the binding site of human serum albumin. J Biol Chem. 1963 Jan;238:138–142. [PubMed] [Google Scholar]
  20. WYMAN J., Jr LINKED FUNCTIONS AND RECIPROCAL EFFECTS IN HEMOGLOBIN: A SECOND LOOK. Adv Protein Chem. 1964;19:223–286. doi: 10.1016/s0065-3233(08)60190-4. [DOI] [PubMed] [Google Scholar]
  21. Weber G. Ligand binding and internal equilibria in proteins. Biochemistry. 1972 Feb 29;11(5):864–878. doi: 10.1021/bi00755a028. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES