Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jan 1;209(1):167–174. doi: 10.1042/bj2090167

Pulse-radiolysis studies on the interaction of one-electron-reduced species with ascorbate oxidase in aqueous solution.

P O'Neill, E M Fielden, A Finazzi-Agrò, L Avigliano
PMCID: PMC1154068  PMID: 6405732

Abstract

The interaction of e-aq., CO2-. and one-electron reduced nitroaromatics (RNO2-.) with ascorbate oxidase (AAO) was studied in aqueous solution at pH 6.0 and 7.5 by using the technique of pulse radiolysis. From observations at 330, 410 and 610 nm, interaction of e-aq. and CO2-. with AAO results in non-specific reduction of the protein followed by reduction of Type 1 Cu in a rate-determining intramolecular step. Only a few per cent of the reducing equivalents ultimately results in reduction of Type 1 Cu. With large excesses of reducing equivalents (e-aq. and CO2-.) with respect to the copper concentration, the amount of Type 1 copper reduced never exceeds 50% of the total amount of Type 1 copper after a single radiation pulse. With less-powerful reducing agents, e.g. RNO2-. reduction of Type 1 Cu occurs via a bimolecular step, and there is no evidence for formation of radicals on protein residues. From observations at 330 nm it is evident that Type 2 and/or Type 3 Cu may also be reduced along with Type 1 Cu. Almost stoichiometric reduction of AAO by RNO2-. was observed, e.g. the protein accepts 6-7 reducing equivalents. It is inferred that the various types of redox couples Cu2+/Cu+ are in equilibrium and that intramolecular electron transfer between the different types of Cu is not rate-determining when using RNO2-. as reducing agent.

Full text

PDF
167

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andréasson L. E., Malmström B. G., Strömberg C., Vänngård T. The kinetics of the anaerobic reduction of fungal laccase B. Eur J Biochem. 1973 May 2;34(3):434–439. doi: 10.1111/j.1432-1033.1973.tb02776.x. [DOI] [PubMed] [Google Scholar]
  2. Andréasson L. E., Reinhammar B. Kinetic studies of Rhus vernicifera laccase. Role of the metal centers in electron transfer. Biochim Biophys Acta. 1976 Oct 11;445(3):579–597. doi: 10.1016/0005-2744(76)90112-1. [DOI] [PubMed] [Google Scholar]
  3. Avigliano L., Gerosa P., Rotilio G., Finazzi Agrò A., Calabrese L., Mondovì B. Ascorbate oxidase. New method of purification of the enzyme from green zucchini squash and identity of its copper moiety with that of cucumber ascorbate oxidase. Ital J Biochem. 1972 Sep-Dec;21(5):248–255. [PubMed] [Google Scholar]
  4. Avigliano L., Rotilio G., Urbanelli S., Mondovi B., Agrò A. F. Anaerobic reaction of ascorbate oxidase with ascorbate. Arch Biochem Biophys. 1978 Jan 30;185(2):419–422. doi: 10.1016/0003-9861(78)90184-4. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. De Ley M., Osaki S. Intramolecular electron transport in human ferroxidase (caeruloplasmin). Biochem J. 1975 Dec;151(3):561–566. doi: 10.1042/bj1510561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Faraggi M., Pecht I. The electron pathway to Cu(II) in ceruloplasmin. J Biol Chem. 1973 May 10;248(9):3146–3149. [PubMed] [Google Scholar]
  8. Faraggi M., Pecht I. The reaction of Pseudomonas azurin with hydrated electrons. Biochem Biophys Res Commun. 1971 Nov;45(4):842–848. doi: 10.1016/0006-291x(71)90415-3. [DOI] [PubMed] [Google Scholar]
  9. Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J. 1974 Apr;139(1):49–60. doi: 10.1042/bj1390049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finazzi-Agrò A., Rotilio G., Avigliano L., Guerrieri P., Boffi V., Mondovì B. Environment of copper in Pseudomonas fluorescens azurin: fluorometric approach. Biochemistry. 1970 Apr 28;9(9):2009–2014. doi: 10.1021/bi00811a023. [DOI] [PubMed] [Google Scholar]
  11. Frieden E., Hsieh H. S. Ceruloplasmin: the copper transport protein with essential oxidase activity. Adv Enzymol Relat Areas Mol Biol. 1976;44:187–236. doi: 10.1002/9780470122891.ch6. [DOI] [PubMed] [Google Scholar]
  12. Henry Y., Guissani A., Gilles L. Radical scavenging and electron transfer reaction in laccase. Biochimie. 1981 Nov-Dec;63(11-12):841–845. doi: 10.1016/s0300-9084(82)80270-8. [DOI] [PubMed] [Google Scholar]
  13. Holwerda R. A., Gray H. B. Mechanistic studies of the reduction of Rhus vernicifera laccase by hydroquinone. J Am Chem Soc. 1974 Sep 18;96(19):6008–6022. doi: 10.1021/ja00826a009. [DOI] [PubMed] [Google Scholar]
  14. Malmström B. G., Agrò A. F., Antonini E. The mechanism of laccase-catalyzed oxidations: kinetic evidence for the involvement of several electron-accepting sites in the enzyme. Eur J Biochem. 1969 Jun;9(3):383–391. doi: 10.1111/j.1432-1033.1969.tb00620.x. [DOI] [PubMed] [Google Scholar]
  15. McAdam M. E., Fox R. A., Lavelle F., Fielden E. M. A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. A kinetic model for the enzyme action. Biochem J. 1977 Jul 1;165(1):71–79. doi: 10.1042/bj1650071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morpurgo L., Graziani M. T., Finazzi-Agrò A., Rotilio G., Mondovì B. Optical properties of japanese-lacquer-tree (Rhus vernicifera) laccase depleted of type 2 copper(II). Involvement of type-2 copper(II) in the 330nm chromophore. Biochem J. 1980 May 1;187(2):361–366. doi: 10.1042/bj1870361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pecht I., Faraggi M. Reduction of copper (II) in fungal laccase by hydrated electrons. Nat New Biol. 1971 Sep 22;233(38):116–118. doi: 10.1038/newbio233116a0. [DOI] [PubMed] [Google Scholar]
  18. Reinhammar B. R., Vänngård T. I. The electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations. Eur J Biochem. 1971 Feb;18(4):463–468. doi: 10.1111/j.1432-1033.1971.tb01264.x. [DOI] [PubMed] [Google Scholar]
  19. Tal Y., Faraggi M. The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solution. I. Factors affecting the rate constants. Radiat Res. 1975 May;62(2):337–346. [PubMed] [Google Scholar]
  20. Wardman P., Clarke E. D. Oxygen inhibition of nitroreductase: electron transfer from nitro radical-anions to oxygen. Biochem Biophys Res Commun. 1976 Apr 19;69(4):942–949. doi: 10.1016/0006-291x(76)90464-2. [DOI] [PubMed] [Google Scholar]
  21. YAMAZAKI I., PIETTE L. H. Mechanism of free radical formation and disappearance during the ascorbic acid oxidase and peroxidase reactions. Biochim Biophys Acta. 1961 Jun 10;50:62–69. doi: 10.1016/0006-3002(61)91060-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES