Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jan 1;209(1):215–222. doi: 10.1042/bj2090215

Medium-chain fatty acid synthesis by goat mammary-gland fatty acid synthetase. The effect of limited proteolysis.

I Grunnet, J Knudsen
PMCID: PMC1154074  PMID: 6552184

Abstract

Fatty acid synthetase from goat mammary gland was subjected to limited proteolysis by trypsin and elastase. Both proteolytic enzymes selectively cleaved the chain-terminating thioester hydrolase component from the enzyme complex, leaving all other partial activities intact in the core peptides. Trypsin, but not elastase, caused extensive degradation of the released thioester hydrolase. The released thioester hydrolase could be purified to homogeneity by gel filtration. The molecular weight was estimated as 29 000 and the enzyme showed only significant hydrolytic activity toward long-chain acyl-CoA esters. The core peptides retained the ability to synthesize medium-chain acyl-CoA esters in the presence of 2,6-di-O-methyl-alpha-cyclodextrin. The results conclusively show that the terminating thioester hydrolase of goat mammary-gland fatty acid synthetase is not involved in termination of medium-chain-length fatty acid synthesis by this enzyme.

Full text

PDF
215

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdinejad A., Fisher A. M., Kumar S. Production and utilization of butyryl-CoA by fatty acid synthetase from mammalian tissues. Arch Biochem Biophys. 1981 Apr 15;208(1):135–145. doi: 10.1016/0003-9861(81)90132-6. [DOI] [PubMed] [Google Scholar]
  2. Annison E. F., Linzell J. L., Fazakerley S., Nichols B. W. The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk-fat synthesis. Biochem J. 1967 Mar;102(3):637–647. doi: 10.1042/bj1020637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bar-Tana J., Rose G., Shapiro B. The purification and properties of microsomal palmitoyl-coenzyme A synthetase. Biochem J. 1971 Apr;122(3):353–362. doi: 10.1042/bj1220353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bedord C. J., Kolattukudy P. E., Rogers L. Isolation and characterization of a tryptic fragment containing the thioesterase segment of fatty acid synthetase from the uropygial gland of goose. Arch Biochem Biophys. 1978 Feb;186(1):139–151. doi: 10.1016/0003-9861(78)90473-3. [DOI] [PubMed] [Google Scholar]
  5. Breckenridge W. C., Kuksis A. Molecular weight distributions of milk fat triglycerides from seven species. J Lipid Res. 1967 Sep;8(5):473–478. [PubMed] [Google Scholar]
  6. Carey E. M., Dils R. The pattern of fatty acid synthesis in lactating rabbit mammary gland studied in vivo. Biochem J. 1972 Feb;126(4):1005–1007. doi: 10.1042/bj1261005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DOLE V. P. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest. 1956 Feb;35(2):150–154. doi: 10.1172/JCI103259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dileepan K. N., Lin C. Y., Smith S. Release of two thioesterase domains from fatty acid synthetase by limited digestion with trypsin. Biochem J. 1978 Oct 1;175(1):199–206. doi: 10.1042/bj1750199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EGGERER H., LYNEN F. [On the biosynthesis of fatty acids. II. Synthesis and properties of S-malonyl-coenzyme A]. Biochem Z. 1962;335:540–547. [PubMed] [Google Scholar]
  10. Grunnet I., Knudsen J. Direct transfer of fatty acids synthesized "de novo" from fatty acid synthetase into triacylglycerols without activation. Biochem Biophys Res Commun. 1981 May 29;100(2):629–636. doi: 10.1016/s0006-291x(81)80222-7. [DOI] [PubMed] [Google Scholar]
  11. Grunnet I., Knudsen J. Fatty-acid synthesis in lactating-goat mammary gland. 1. Medium-chain fatty-acid synthesis. Eur J Biochem. 1979 Apr;95(3):497–502. doi: 10.1111/j.1432-1033.1979.tb12989.x. [DOI] [PubMed] [Google Scholar]
  12. Grunnet I., Knudsen J. Medium chain acyl-thioester hydrolase activity in goat and rabbit mammary gland fatty acid synthetase complexes. Biochem Biophys Res Commun. 1978 Feb 28;80(4):745–749. doi: 10.1016/0006-291x(78)91308-6. [DOI] [PubMed] [Google Scholar]
  13. Grunnet I., Knudsen J. Molecular weight and subunit size of rabbit mammary-gland fatty acid synthetase. Biochem J. 1978 Sep 1;173(3):929–933. doi: 10.1042/bj1730929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guy P., Law S., Hardie G. Mammalian fatty acid synthetase: evidence for subunit identity and specific removal of the thioesterase component using elastase digestion. FEBS Lett. 1978 Oct 1;94(1):33–37. doi: 10.1016/0014-5793(78)80900-4. [DOI] [PubMed] [Google Scholar]
  15. Hansen J. K., Knudsen J. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of butyrate and hexanoate by lactating cow mammary gland fatty acid synthetase. Biochem J. 1980 Jan 15;186(1):287–294. doi: 10.1042/bj1860287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knudsen J., Clark S., Dils R. Purification and some properties of a medium-chain acyl-thioester hydrolase from lactating-rabbit mammary gland which terminates chain elongation in fatty acid synthesis. Biochem J. 1976 Dec 15;160(3):683–691. doi: 10.1042/bj1600683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knudsen J. Fatty acid synthetase from cow mammary gland tissue cells. Biochim Biophys Acta. 1972 Nov 30;280(3):408–414. doi: 10.1016/0005-2760(72)90246-9. [DOI] [PubMed] [Google Scholar]
  18. Knudsen J., Grunnet I. Primer specificity of mammalian mammary gland fatty acid synthetases. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1808–1814. doi: 10.1016/s0006-291x(80)80109-4. [DOI] [PubMed] [Google Scholar]
  19. Knudsen J., Grunnet I. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase. Biochem J. 1982 Jan 15;202(1):139–143. doi: 10.1042/bj2020139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knudsen J., Hansen J. K., Grunnet I. Quantitative extraction and separation from [1-14C]acetate and preparation for ratio gas chromatography of microgram amounts of a 14C-labeled mixture of butyrate and longer-chain-length fatty acids. Anal Biochem. 1981 Mar 15;112(1):190–193. doi: 10.1016/0003-2697(81)90279-7. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Libertini L. J., Smith S. Purification and properties of a thioesterase from lactating rat mammary gland which modifies the product specificity of fatty acid synthetase. J Biol Chem. 1978 Mar 10;253(5):1393–1401. [PubMed] [Google Scholar]
  23. Lin C. Y., Smith S. Properties of the thioesterase component obtained by limited trypsinization of the fatty acid synthetase multienzyme complex. J Biol Chem. 1978 Mar 25;253(6):1954–1962. [PubMed] [Google Scholar]
  24. Puri R. N., Porter J. W. Isolation of thioesterase and acyl carrier protein activities liberated by elastase digestion of pigeon liver fatty acid synthetase. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1010–1016. doi: 10.1016/0006-291x(81)91924-0. [DOI] [PubMed] [Google Scholar]
  25. Rabinowitz S. S., LaPorte M., Porter J. W. Limited elastase digestion of pigeon liver fatty acid synthetase with retention of all partial enzyme activities. J Biol Chem. 1982 Mar 25;257(6):3291–3300. [PubMed] [Google Scholar]
  26. Smith S., Agradi E., Libertini L., Dileepan K. N. Specific release of the thioesterase component of the fatty acid synthetase multienzyme complex by limited trypsinization. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1184–1188. doi: 10.1073/pnas.73.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith S., Libertini L. J. Specificity and site of action of a mammary gland thioesterase which releases acyl moieties from thioester linkage to the fatty acid synthetase. Arch Biochem Biophys. 1979 Aug;196(1):88–92. doi: 10.1016/0003-9861(79)90554-x. [DOI] [PubMed] [Google Scholar]
  28. Smith S., Stern A. Development of the capacity of mouse mammary glands for medium chain fatty acid synthesis during pregnancy and lactation. Biochim Biophys Acta. 1981 Jun 23;664(3):611–615. doi: 10.1016/0005-2760(81)90137-5. [DOI] [PubMed] [Google Scholar]
  29. Smith S., Watts R., Dils R. Quantitative gas-liquid chromatographic analysis of rodent milk triglycerides. J Lipid Res. 1968 Jan;9(1):52–57. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES