Abstract
Conformational aspects of N-glycosylation have been investigated with a series of proline-containing peptides as molecular probes. The results demonstrate that, depending on the position of the imino acid in the peptide chain, dramatic alterations of glycosylation rates are produced, pointing to a critical contribution of the amino acids framing the 'marker sequence' triplet Asn-Xaa-Thr(Ser) on the formation of a potential sugar-attachment site. No glycosyl transfer at all was detectable to those peptides containing a proline residue either in position Xaa or in the next position beyond the threonine of the Asn-sequon on the C-terminal side, whereas the hexapeptide Pro-Asn-Gly-Thr-Ala-Val was glycosylated at a high rate. (Emboldened residues denote the 'marker sequence' that is identical in all the peptides; italicized residues distinguish the positions of proline in the various peptides.) Studies with space-filling models reveal that the lack of glycosyl-acceptor capabilities of Ala(Pro)-Asn-Gly-Thr-Pro-Val might be directly related to their inability to adopt and/or stabilize a turn or loop conformation which permits the catalytically essential interaction between the hydroxy amino acid and the asparagine residue within the 'marker sequence' [Bause & Legler (1981) Biochem. J. 195, 639-644]. This conclusion is supported by circular-dichroism spectroscopic data, which suggest structure-forming potentials in this type of non-acceptor peptides dominating over those that favour the induction of an appropriate sugar-attachment site in the acceptor peptides. The lack of acceptor properties of Tyr-Asn-Pro-Thr-Ser-Val indicates that even small modifications in the 'recognition' pattern are not tolerated by the N-glycosyltransferases.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubert J. P., Biserte G., Loucheux-Lefebvre M. H. Carbohydrate-peptide linkage in glycoproteins. Arch Biochem Biophys. 1976 Aug;175(2):410–418. doi: 10.1016/0003-9861(76)90528-2. [DOI] [PubMed] [Google Scholar]
- Bause E., Hettkamp H., Legler G. Conformational aspects of N-glycosylation of proteins. Studies with linear and cyclic peptides as probes. Biochem J. 1982 Jun 1;203(3):761–768. doi: 10.1042/bj2030761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bause E., Hettkamp H. Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett. 1979 Dec 15;108(2):341–344. doi: 10.1016/0014-5793(79)80559-1. [DOI] [PubMed] [Google Scholar]
- Bause E., Legler G. The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J. 1981 Jun 1;195(3):639–644. doi: 10.1042/bj1950639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bause E. Studies on the acceptor specificity of asparagine-N-glycosyl-transferase from rat liver. FEBS Lett. 1979 Jul 15;103(2):296–299. doi: 10.1016/0014-5793(79)81348-4. [DOI] [PubMed] [Google Scholar]
- Beeley J. G. Peptide chain conformation and the glycosylation of glycoproteins. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1051–1055. doi: 10.1016/0006-291x(77)90962-7. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marshall R. D. The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp. 1974;(40):17–26. [PubMed] [Google Scholar]
- Pless D. D., Lennarz W. J. Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci U S A. 1977 Jan;74(1):134–138. doi: 10.1073/pnas.74.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronin C., Bouchilloux S., Granier C., van Rietschoten J. Enzymatic N-glycosylation of synthetic Asn--X--Thr containing peptides. FEBS Lett. 1978 Dec 1;96(1):179–182. doi: 10.1016/0014-5793(78)81089-8. [DOI] [PubMed] [Google Scholar]
- Ronin C., Granier C., Caseti C., Bouchilloux S., Van Rietschoten J. Synthetic substrates for thyroid oligosaccharide transferase. Effects of peptide chain length and modifications in the Asn-Xaa-Thr-region. Eur J Biochem. 1981 Aug;118(1):159–164. doi: 10.1111/j.1432-1033.1981.tb05499.x. [DOI] [PubMed] [Google Scholar]