Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Mar 1;209(3):587–595. doi: 10.1042/bj2090587

Structural studies on the microfibrillar proteins of wool. Interaction between alpha-helical segments and reassembly of a four-chain structure.

L C Gruen, E F Woods
PMCID: PMC1154135  PMID: 6688176

Abstract

The alpha-helix-rich particle of Mr 50 200, derived by limited alpha-chymotryptic digestion of the solubilized microfibrillar proteins from wool alpha-keratin, consists mainly of polypeptide-chain segments of Mr 12 500 (fraction ChC) and 25 000 (fraction ChB). The 12 500-Mr segments are of two types (I and II), which are derived from different polypeptide chains of the microfibrillar complex. Each of these type-I and type-II segments partially self-associates in benign solvents to form either dimers or tetramers. When mixed, the two segments show changes in physical properties (alpha-helix content, difference spectra and molecular weight) indicative of complex-formation. The maximum changes occur when the two segments are mixed in an equimolar ratio. Complexes isolated after rapid dialysis of mixtures from 8 M-urea solution were examined by various methods. A tetrameric structure is the main product formed in all cases, and the maximum amount of tetramer is obtained from equimolar mixtures of the type-I and type-II polypeptides. When urea is removed by dialysis from the unfractionated 12 500-Mr segments (fraction ChC) or from the alpha-helix-rich particle itself, a similar complex of Mr 50 000 is formed. The physical properties of these reconstituted entities (alpha-helix content, molecular weight, thermal stability and exposure of tyrosine residues) are similar to those of the original alpha-helix-rich particle. Cross-linking experiments with dimethyl suberimidate are in agreement with a four-chain complex for the reassembled structures. A pair of double-stranded alpha-helices is proposed for the particle, and is considered to be an integral part of the microfibrillar complex in wool alpha-keratin.

Full text

PDF
587

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmadi B., Speakman P. T. Suberimidate crosslinking shows that a rod-shaped, low cystine, high helix protein prepared by limited proteolysis of reduced wool has four protein chains. FEBS Lett. 1978 Oct 15;94(2):365–367. doi: 10.1016/0014-5793(78)80978-8. [DOI] [PubMed] [Google Scholar]
  2. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  3. Crewther W. G., Inglis A. S., McKern N. M. Amino acid sequences of alpha-helical segments from S-carboxymethylkerateine-A. Complete sequence of a type-II segment. Biochem J. 1978 Aug 1;173(2):365–371. doi: 10.1042/bj1730365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FRASER R. D., MACRAE T. P., MILLER A. THE COILED-COIL MODEL OF ALPHA-KERATIN STRUCTURE. J Mol Biol. 1964 Oct;10:147–156. doi: 10.1016/s0022-2836(64)80034-6. [DOI] [PubMed] [Google Scholar]
  6. Fraser R. D., MacRae T. P., Miller A. X-ray diffraction patterns of alpha-fibrous proteins. J Mol Biol. 1965 Dec;14(2):432–442. doi: 10.1016/s0022-2836(65)80193-0. [DOI] [PubMed] [Google Scholar]
  7. Fraser R. D., MacRae T. P., Suzuki E. Structure of the alpha-keratin microfibril. J Mol Biol. 1976 Dec;108(2):435–452. doi: 10.1016/s0022-2836(76)80129-5. [DOI] [PubMed] [Google Scholar]
  8. Gough K. H., Inglis A. S., Crewther W. G. Amino acid sequences of alpha-helical segments from S-carbosymethylkerateine-A. Complete sequence of a type-I segment. Biochem J. 1978 Aug 1;173(2):373–385. doi: 10.1042/bj1730373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lotay S. S., Speakman P. T. Three-chain merokeratin from wool may be a fragment of the microfibril component macromolecule. Nature. 1977 Jan 20;265(5591):274–276. doi: 10.1038/265274a0. [DOI] [PubMed] [Google Scholar]
  10. McLachlan A. D. Coiled coil formation and sequence regularities in the helical regions of alpha-keratin. J Mol Biol. 1978 Sep 5;124(1):297–304. doi: 10.1016/0022-2836(78)90163-8. [DOI] [PubMed] [Google Scholar]
  11. PAULING L., COREY R. B. Compound helical configurations of polypeptide chains: structure of proteins of the alpha-keratin type. Nature. 1953 Jan 10;171(4341):59–61. doi: 10.1038/171059a0. [DOI] [PubMed] [Google Scholar]
  12. Parry D. A., Crewther W. G., Fraser R. D., MacRae T. P. Structure of alpha-keratin: structural implication of the amino acid sequences of the type I and type II chain segments. J Mol Biol. 1977 Jun 25;113(2):449–454. doi: 10.1016/0022-2836(77)90153-x. [DOI] [PubMed] [Google Scholar]
  13. Steinert P. M., Idler W. W. The polypeptide composition of bovine epidermal alpha-keratin. Biochem J. 1975 Dec;151(3):603–614. doi: 10.1042/bj1510603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steinert P. M. Structural features of the alpha-type filaments of the inner root sheath cells of the guinea pig hair follicle. Biochemistry. 1978 Nov 14;17(23):5045–5052. doi: 10.1021/bi00616a029. [DOI] [PubMed] [Google Scholar]
  15. Steinert P. M. Structure of the three-chain unit of the bovine epidermal keratin filament. J Mol Biol. 1978 Jul 25;123(1):49–70. doi: 10.1016/0022-2836(78)90376-5. [DOI] [PubMed] [Google Scholar]
  16. Steinert P. M., Zimmerman S. B., Starger J. M., Goldman R. D. Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6098–6101. doi: 10.1073/pnas.75.12.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Steven A. C., Wall J., Hainfeld J., Steinert P. M. Structure of fibroblastic intermediate filaments: analysis of scanning transmission electron microscopy. Proc Natl Acad Sci U S A. 1982 May;79(10):3101–3105. doi: 10.1073/pnas.79.10.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Suzuki E., Crewther W. G., Fraser R. D., MacRae T. P., McKern N. M. X-ray diffraction and infrared studies of an -helical fragment from -keratin. J Mol Biol. 1973 Jan 10;73(2):275–278. doi: 10.1016/0022-2836(73)90329-x. [DOI] [PubMed] [Google Scholar]
  19. Woods E. F., Gruen L. C. Structural studies on the microfibrillar proteins of wool: characterization of the alpha-helix-rich particle produced by chymotryptic digestion. Aust J Biol Sci. 1981;34(5-6):515–526. doi: 10.1071/bi9810515. [DOI] [PubMed] [Google Scholar]
  20. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES