Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Mar 1;209(3):677–685. doi: 10.1042/bj2090677

Metabolism of 3-deoxy-3-fluoro-D-mannose and 4-deoxy-4-fluoro-D-mannose by Saccharomyces cerevisiae S288C.

T J Grier, J R Rasmussen
PMCID: PMC1154145  PMID: 6347179

Abstract

Incubation of Saccharomyces cerevisiae S288C with 4-deoxy-4-fluoro-D-[1-14C]-mannose resulted in the formation of three metabolites that were characterized as 4-deoxy-4-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 4-deoxy-4-fluoro-D-[1-14C]-mannose 6-phosphate and GDP-4-deoxy-4-fluoro-D-[1-14C]mannose. In addition, radioactive material was incorporated into a particulate fraction composed primarily of cell-wall polysaccharides. Compared with the 4-fluoro sugar, 3-deoxy-3-fluoro-D-[1-14C]mannose was not transported into yeast cells as well, and its conversion into sugar nucleotide was much less efficient. Metabolites that were isolated after incubation with the 3-fluoro analogue were identified as 3-deoxy-3-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 3-deoxy-3-fluoro-D-[1-14C]mannose 6-phosphate and GDP-3-deoxy-3-fluoro-D-[1-14C]mannose. Little radioactivity was transferred into the cell-wall fraction.

Full text

PDF
677

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. M., Stenkamp R. E., McDonald R. C., Steitz T. A. A refined model of the sugar binding site of yeast hexokinase B. J Mol Biol. 1978 Aug 5;123(2):207–219. doi: 10.1016/0022-2836(78)90321-2. [DOI] [PubMed] [Google Scholar]
  2. Bernacki R. J., Sharma M., Porter N. K., Rustum Y., Paul B., Korythyk W. Biochemical characteristics, metabolism, and antitumor activity of several acetylated hexosamines. J Supramol Struct. 1977;7(2):235–250. doi: 10.1002/jss.400070208. [DOI] [PubMed] [Google Scholar]
  3. Bessell E. M., Courtenay V. D., Foster A. B., Jones M., Westwood J. H. Some in vivo and in vitro antitumour effects of the deoxyfluoro-D-glucopyranoses. Eur J Cancer. 1973 Jul;9(7):463–470. doi: 10.1016/0014-2964(73)90128-x. [DOI] [PubMed] [Google Scholar]
  4. Bessell E. M., Foster A. B., Westwood J. H. The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem J. 1972 Jun;128(2):199–204. doi: 10.1042/bj1280199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bessell E. M., Thomas P. The deoxyfluoro-D-glucopyranose 6-phosphates and their effect on yeast glucose phosphate isomerase. Biochem J. 1973 Jan;131(1):77–82. doi: 10.1042/bj1310077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bessell E. M., Thomas P. The effect of substitution at C-2 of D-glucose 6-phosphate on the rate of dehydrogenation by glucose 6-phosphate dehydrogenase (from yeast and from rat liver). Biochem J. 1973 Jan;131(1):83–89. doi: 10.1042/bj1310083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Biely P., Krátký Z., Bauer S. Metabolism of 2-deoxy-D glucose by Baker's yeast. IV. Incorporation of 2-deoxy-D-glucose into cell wall mannan. Biochim Biophys Acta. 1972 Feb 11;255(2):631–639. doi: 10.1016/0005-2736(72)90166-6. [DOI] [PubMed] [Google Scholar]
  8. Braell W. A., Tyo M. A., Krag S. S., Robbins P. W. A new procedure for the preparation of GDP-[U-14C]mannose. Anal Biochem. 1976 Aug;74(2):484–487. doi: 10.1016/0003-2697(76)90229-3. [DOI] [PubMed] [Google Scholar]
  9. Büchsel R., Hassels-Vischer B., Tauber R., Reutter W. 2-Deoxy-D-galactose impairs the fucosylation of glycoproteins of rat liver and Morris hepatoma. Eur J Biochem. 1980 Oct;111(2):445–453. doi: 10.1111/j.1432-1033.1980.tb04959.x. [DOI] [PubMed] [Google Scholar]
  10. Franzusoff A., Cirillo V. P. Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Jun 14;688(2):295–304. doi: 10.1016/0005-2736(82)90340-6. [DOI] [PubMed] [Google Scholar]
  11. HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
  12. Romaschin A., Taylor N. F. The in vivo effects of 3-deoxy-3-fluoro-D-glucose metabolism on respiration in Locusta migratoria. Can J Biochem. 1981 Apr;59(4):262–268. doi: 10.1139/o81-036. [DOI] [PubMed] [Google Scholar]
  13. Schmidt M. F., Schwarz R. T., Scholtissek C. Nucleoside-diphosphate derivatives of 2-deoxy-D-glucose in animal cells. Eur J Biochem. 1974 Nov 1;49(1):237–247. doi: 10.1111/j.1432-1033.1974.tb03828.x. [DOI] [PubMed] [Google Scholar]
  14. Scholtissek C. Inhibition of the multiplication of enveloped viruses by glucose derivatives. Curr Top Microbiol Immunol. 1975;70:101–119. doi: 10.1007/978-3-642-66101-3_4. [DOI] [PubMed] [Google Scholar]
  15. Schwarz R. T., Schmidt F. G. Formation of uridine diphosphate 2-deoxy-D-glucose and guanosine diphosphate 2-deoxy-D-glucose in vitro using animal enzymes. Eur J Biochem. 1976 Feb 2;62(1):181–187. doi: 10.1111/j.1432-1033.1976.tb10111.x. [DOI] [PubMed] [Google Scholar]
  16. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  17. Sufrin J. R., Bernacki R. J., Morin M. J., Korytnyk W. Halogenated L-fucose and D-galactose analogues: synthesis and metabolic effects. J Med Chem. 1980 Feb;23(2):143–149. doi: 10.1021/jm00176a008. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES