Abstract
Incubation of Saccharomyces cerevisiae S288C with 4-deoxy-4-fluoro-D-[1-14C]-mannose resulted in the formation of three metabolites that were characterized as 4-deoxy-4-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 4-deoxy-4-fluoro-D-[1-14C]-mannose 6-phosphate and GDP-4-deoxy-4-fluoro-D-[1-14C]mannose. In addition, radioactive material was incorporated into a particulate fraction composed primarily of cell-wall polysaccharides. Compared with the 4-fluoro sugar, 3-deoxy-3-fluoro-D-[1-14C]mannose was not transported into yeast cells as well, and its conversion into sugar nucleotide was much less efficient. Metabolites that were isolated after incubation with the 3-fluoro analogue were identified as 3-deoxy-3-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 3-deoxy-3-fluoro-D-[1-14C]mannose 6-phosphate and GDP-3-deoxy-3-fluoro-D-[1-14C]mannose. Little radioactivity was transferred into the cell-wall fraction.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. M., Stenkamp R. E., McDonald R. C., Steitz T. A. A refined model of the sugar binding site of yeast hexokinase B. J Mol Biol. 1978 Aug 5;123(2):207–219. doi: 10.1016/0022-2836(78)90321-2. [DOI] [PubMed] [Google Scholar]
- Bernacki R. J., Sharma M., Porter N. K., Rustum Y., Paul B., Korythyk W. Biochemical characteristics, metabolism, and antitumor activity of several acetylated hexosamines. J Supramol Struct. 1977;7(2):235–250. doi: 10.1002/jss.400070208. [DOI] [PubMed] [Google Scholar]
- Bessell E. M., Courtenay V. D., Foster A. B., Jones M., Westwood J. H. Some in vivo and in vitro antitumour effects of the deoxyfluoro-D-glucopyranoses. Eur J Cancer. 1973 Jul;9(7):463–470. doi: 10.1016/0014-2964(73)90128-x. [DOI] [PubMed] [Google Scholar]
- Bessell E. M., Foster A. B., Westwood J. H. The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem J. 1972 Jun;128(2):199–204. doi: 10.1042/bj1280199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessell E. M., Thomas P. The deoxyfluoro-D-glucopyranose 6-phosphates and their effect on yeast glucose phosphate isomerase. Biochem J. 1973 Jan;131(1):77–82. doi: 10.1042/bj1310077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessell E. M., Thomas P. The effect of substitution at C-2 of D-glucose 6-phosphate on the rate of dehydrogenation by glucose 6-phosphate dehydrogenase (from yeast and from rat liver). Biochem J. 1973 Jan;131(1):83–89. doi: 10.1042/bj1310083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biely P., Krátký Z., Bauer S. Metabolism of 2-deoxy-D glucose by Baker's yeast. IV. Incorporation of 2-deoxy-D-glucose into cell wall mannan. Biochim Biophys Acta. 1972 Feb 11;255(2):631–639. doi: 10.1016/0005-2736(72)90166-6. [DOI] [PubMed] [Google Scholar]
- Braell W. A., Tyo M. A., Krag S. S., Robbins P. W. A new procedure for the preparation of GDP-[U-14C]mannose. Anal Biochem. 1976 Aug;74(2):484–487. doi: 10.1016/0003-2697(76)90229-3. [DOI] [PubMed] [Google Scholar]
- Büchsel R., Hassels-Vischer B., Tauber R., Reutter W. 2-Deoxy-D-galactose impairs the fucosylation of glycoproteins of rat liver and Morris hepatoma. Eur J Biochem. 1980 Oct;111(2):445–453. doi: 10.1111/j.1432-1033.1980.tb04959.x. [DOI] [PubMed] [Google Scholar]
- Franzusoff A., Cirillo V. P. Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Jun 14;688(2):295–304. doi: 10.1016/0005-2736(82)90340-6. [DOI] [PubMed] [Google Scholar]
- HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
- Romaschin A., Taylor N. F. The in vivo effects of 3-deoxy-3-fluoro-D-glucose metabolism on respiration in Locusta migratoria. Can J Biochem. 1981 Apr;59(4):262–268. doi: 10.1139/o81-036. [DOI] [PubMed] [Google Scholar]
- Schmidt M. F., Schwarz R. T., Scholtissek C. Nucleoside-diphosphate derivatives of 2-deoxy-D-glucose in animal cells. Eur J Biochem. 1974 Nov 1;49(1):237–247. doi: 10.1111/j.1432-1033.1974.tb03828.x. [DOI] [PubMed] [Google Scholar]
- Scholtissek C. Inhibition of the multiplication of enveloped viruses by glucose derivatives. Curr Top Microbiol Immunol. 1975;70:101–119. doi: 10.1007/978-3-642-66101-3_4. [DOI] [PubMed] [Google Scholar]
- Schwarz R. T., Schmidt F. G. Formation of uridine diphosphate 2-deoxy-D-glucose and guanosine diphosphate 2-deoxy-D-glucose in vitro using animal enzymes. Eur J Biochem. 1976 Feb 2;62(1):181–187. doi: 10.1111/j.1432-1033.1976.tb10111.x. [DOI] [PubMed] [Google Scholar]
- Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
- Sufrin J. R., Bernacki R. J., Morin M. J., Korytnyk W. Halogenated L-fucose and D-galactose analogues: synthesis and metabolic effects. J Med Chem. 1980 Feb;23(2):143–149. doi: 10.1021/jm00176a008. [DOI] [PubMed] [Google Scholar]