Abstract
Differential scanning calorimetry is shown to detect substantial structural alterations occurring on the association of proteinases with the serum glycoprotein alpha 2-macroglobulin. At pH 7.5, the thermally induced unfolding of the macroglobulin occurs at approx. 60 degrees C with a transition enthalpy of 17 J/g. Association of active thermolysin, trypsin and papain shifts the transition temperature to 77 degrees C (transition enthalpy 5 J/g), indicating that a substantial conformational change accompanies the binding event. The stoicheiometry of the thermolysin--alpha 2-macroglobulin association producing this change appears to be unity, implying the presence of co-operative subunit interactions in the mechanism of association. The calorimetric method provides a novel approach for the evaluation of conformational variants induced on protein-protein association or pre-existing in the purified macroglobulin.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Brown M. A., Sayers C. A. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule. Biochem J. 1979 Aug 1;181(2):401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biltonen R. L., Freire E. Thermodynamic characterization of conformational states of biological macromolecules using differential scanning calorimetry. CRC Crit Rev Biochem. 1978;5(2):85–124. doi: 10.3109/10409237809177141. [DOI] [PubMed] [Google Scholar]
- Chlebowski J. F., Mabrey S. Differential scanning calorimetry of apo-, apophosphoryl, and metalloalkaline phosphatases. J Biol Chem. 1977 Oct 25;252(20):7042–7052. [PubMed] [Google Scholar]
- Chlebowski J. F., Mabrey S., Falk M. C. Calorimetry of alkaline phosphatase. Stability of the monomer and effect of metal ion and phosphate binding on dimer stability. J Biol Chem. 1979 Jul 10;254(13):5745–5753. [PubMed] [Google Scholar]
- Dunn J. T., Spiro R. G. The alpha 2-macroglobulin of human plasma. I. Isolation and composition. J Biol Chem. 1967 Dec 10;242(23):5549–5555. [PubMed] [Google Scholar]
- Frénoy J. P., Bourrillon R., Lippoldt R., Edelhoch H. Stability and subunit structure of human alpha2-macroglobulin. J Biol Chem. 1977 Feb 25;252(4):1129–1133. [PubMed] [Google Scholar]
- Frénoy J. P., Bourrillon R. Studies on the structure of human alpha2-macroglobulin. IV. Analysis of the microheterogeneity by isoelectric focusing. Biochim Biophys Acta. 1974 Nov 5;371(1):168–176. doi: 10.1016/0005-2795(74)90166-4. [DOI] [PubMed] [Google Scholar]
- Howard J. B. Methylamine reaction and denaturation-dependent fragmentation of complement component 3. Comparison with alpha2-macroglobulin. J Biol Chem. 1980 Aug 10;255(15):7082–7084. [PubMed] [Google Scholar]
- Howard J. B. Reactive site in human alpha 2-macroglobulin: circumstantial evidence for a thiolester. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2235–2239. doi: 10.1073/pnas.78.4.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. M., Creeth J. M., Kekwick R. A. Thio reduction of human 2 -macroglobulin. The subunit structure. Biochem J. 1972 Mar;127(1):187–197. doi: 10.1042/bj1270187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
- Sottrup-Jensen L., Petersen T. E., Magnusson S. Trypsin-induced activation of the thiol esters in alpha 2-macroglobulin generates a short-lived intermediate ('nascent' alpha 2-M) that can react rapidly to incorporate not only methylamine or putrescine but also proteins lacking proteinase activity. FEBS Lett. 1981 Jun 1;128(1):123–126. doi: 10.1016/0014-5793(81)81096-4. [DOI] [PubMed] [Google Scholar]
- Swenson R. P., Howard J. B. Characterization of alkylamine-sensitive site in alpha 2-macroglobulin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4313–4316. doi: 10.1073/pnas.76.9.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swenson R. P., Howard J. B. Structural characterization of human alpha2-macroglobulin subunits. J Biol Chem. 1979 Jun 10;254(11):4452–4456. [PubMed] [Google Scholar]
- Takahashi K., Sturtevant J. M. Thermal denaturation of streptomyces subtilisin inhibitor, subtilisin BPN', and the inhibitor-subtilisin complex. Biochemistry. 1981 Oct 13;20(21):6185–6190. doi: 10.1021/bi00524a042. [DOI] [PubMed] [Google Scholar]
- Topping R. M., Craven A. H. The identification of distinctive forms of human alpha 2-macroglobulin by using the numerical relationship between trypsin binding in alpha- and beta-modes. Biochem J. 1979 Feb 1;177(2):501–508. doi: 10.1042/bj1770501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Topping R. M., Seilman S. A four-straight-line model for the proteinase-binding characteristics of human blood serum. Biochem J. 1979 Feb 1;177(2):493–499. doi: 10.1042/bj1770493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vickers L. P., Donovan J. W., Schachman H. K. Differential scanning calorimetry of asparate transcarbamoylase and its isolate subunits. J Biol Chem. 1978 Dec 10;253(23):8493–8498. [PubMed] [Google Scholar]
- Werb Z., Burleigh M. C., Barrett A. J., Starkey P. M. The interaction of alpha2-macroglobulin with proteinases. Binding and inhibition of mammalian collagenases and other metal proteinases. Biochem J. 1974 May;139(2):359–368. doi: 10.1042/bj1390359. [DOI] [PMC free article] [PubMed] [Google Scholar]