Abstract
1. Prompted by the finding of markedly differing specific radioactivities of tissue alanine and lactate in isolated rat hearts perfused with [1-14C]pyruvate, a more detailed study on the cytosolic subcompartmentalization of pyruvate was undertaken. Isolated rat hearts were perfused by the once-through Langendorff technique under metabolic and isotopic steady-state conditions but with various routes of radioactive label influx, and the specific radioactivities of pyruvate, lactate and alanine were determined. An enzymic method was devised to determine the specific radioactivity of C-1 of pyruvate. 2. Label introduction as [1-14C]pyruvate resulted in a higher specific radioactivity of tissue alanine and mitochondrial pyruvate than of lactate, and a higher specific radioactivity of perfusate lactate than of tissue lactate. Label introduction as [1-14C]lactate resulted in a roughly similar isotope dilution into the tissue and perfusate pyruvate and the tissue alanine. Label introduction as [3,4-14C]glucose resulted in the same specific radioactivity of tissue lactate and alanine and a roughly similar specific radioactivity of mitochondrial pyruvate. 3. The results can be reconciled with a metabolic model containing two cytosolic functional pyruvate pools. One pool (I) communicates more closely with the glycolytic system, whereas the other (II) communicates with extracellular pyruvate and intracellular alanine. Pool II is in close connection with intramitochondrial pyruvate. The physical identity of the cytosolic subcompartments of pyruvate is discussed.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Garland P. B., Newsholme E. A., Randle P. J. Regulation of glucose uptake by muscle. 9. Effects of fatty acids and ketone bodies, and of alloxan-diabetes and starvation, on pyruvate metabolism and on lactate-pyruvate and L-glycerol 3-phosphate-dihydroxyacetone phosphate concentration ratios in rat heart and rat diaphragm muscles. Biochem J. 1964 Dec;93(3):665–678. doi: 10.1042/bj0930665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grove D., Zak R., Nair K. G., Aschenbrenner V. Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res. 1969 Oct;25(4):473–485. doi: 10.1161/01.res.25.4.473. [DOI] [PubMed] [Google Scholar]
- Hiltunen J. K., Hassinen I. E. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Biochim Biophys Acta. 1976 Aug 13;440(2):377–390. doi: 10.1016/0005-2728(76)90072-4. [DOI] [PubMed] [Google Scholar]
- Jarvie D. R., Ottaway J. H. Localization in cardiac muscle of some enzymes related to glutamate metabolism. Histochem J. 1975 Mar;7(2):165–178. doi: 10.1007/BF01004560. [DOI] [PubMed] [Google Scholar]
- Kauppinen R. A., Hiltunen J. K., Hassinen I. E. Compartmentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart. Biochim Biophys Acta. 1982 Aug 20;681(2):286–291. doi: 10.1016/0005-2728(82)90033-0. [DOI] [PubMed] [Google Scholar]
- Kauppinen R. A., Hiltunen J. K., Hassinen I. E. Subcellular distribution of phosphagens in isolated perfused rat heart. FEBS Lett. 1980 Apr 7;112(2):273–276. doi: 10.1016/0014-5793(80)80196-7. [DOI] [PubMed] [Google Scholar]
- LaNoue K., Nicklas W. J., Williamson J. R. Control of citric acid cycle activity in rat heart mitochondria. J Biol Chem. 1970 Jan 10;245(1):102–111. [PubMed] [Google Scholar]
- Mowbray J., Ottaway J. H. The effect of insulin and growth hormone on the flux of tracer from labelled lactate in perfused rat heart. Eur J Biochem. 1973 Jul 16;36(2):369–379. doi: 10.1111/j.1432-1033.1973.tb02921.x. [DOI] [PubMed] [Google Scholar]
- Mowbray J., Ottaway J. H. The flux of pyruvate in perfused rat heart. Eur J Biochem. 1973 Jul 16;36(2):362–368. doi: 10.1111/j.1432-1033.1973.tb02920.x. [DOI] [PubMed] [Google Scholar]
- Nuutinen E. M., Peuhkurinen K. J., Pietiläinen E. P., Hiltunen J. K., Hassinen I. E. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium. Biochem J. 1981 Mar 15;194(3):867–875. doi: 10.1042/bj1940867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peuhkurinen K. J., Hassinen I. E. Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Biochem J. 1982 Jan 15;202(1):67–76. doi: 10.1042/bj2020067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peuhkurinen K. J., Nuutinen E. M., Pietiläinen E. P., Hiltunen J. K., Hassinen I. E. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium. Biochem J. 1982 Dec 15;208(3):577–581. doi: 10.1042/bj2080577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soboll S., Bünger R. Compartmentation of adenine nucleotides in the isolated working guinea pig heart stimulated by noradrenaline. Hoppe Seylers Z Physiol Chem. 1981 Feb;362(2):125–132. doi: 10.1515/bchm2.1981.362.1.125. [DOI] [PubMed] [Google Scholar]
- Takala T. E., Hassinen I. E. Effect of mechanical work load on the transmural distribution of glucose uptake in the isolated perfused rat heart, studied by regional deoxyglucose trapping. Circ Res. 1981 Jul;49(1):62–69. doi: 10.1161/01.res.49.1.62. [DOI] [PubMed] [Google Scholar]
- Takala T. Protein synthesis in the isolated perfused rat heart. Effects of mechanical work load, diastolic ventricular pressure and coronary pressure on amino acid incorporation and its transmural distribution into left ventricular protein. Basic Res Cardiol. 1981 Jan-Feb;76(1):44–61. doi: 10.1007/BF01908162. [DOI] [PubMed] [Google Scholar]
- WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]