Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Feb 15;210(2):437–449. doi: 10.1042/bj2100437

Elevated membrane cholesterol concentrations inhibit glucagon-stimulated adenylate cyclase.

A D Whetton, L M Gordon, M D Houslay
PMCID: PMC1154242  PMID: 6305341

Abstract

A method was devised which increases the cholesterol concentration of rat liver plasma membranes by exchange from cholesterol-rich liposomes at low temperature (4 degrees C). When the cholesterol concentration of liver plasma membranes is increased, there is an increase in lipid order as detected by a decrease in mobility of an incorporated fatty acid spin probe. This is accompanied by an inhibition of adenylate cyclase activity. The various ligand-stimulated adenylate cyclase activities exhibit different sensitivities to inhibition by cholesterol, with inhibition of glucagon-stimulated greater than fluoride-stimulated greater than basal activity. The bilayer-fluidizing agent benzyl alcohol is able to reverse the inhibitory effect of cholesterol on adenylate cyclase activity in full. The thermostability of fluoride-stimulated cyclase is increased in the cholesterol-rich membranes. Elevated cholesterol concentrations abolish the lipid-phase separation occurring at 28 degrees C in native membranes as detected by an incorporated fatty acid spin probe. This causes Arrhenius plots of glucagon-stimulated adenylate cyclase activity to become linear, rather than exhibiting a break at 28 degrees C. It is suggested that the cholesterol contents of both halves of the bilayer are increased by the method used and that inhibition of adenylate cyclase ensues, owing to the increase in lipid order and promotion of protein-protein and specific cholesterol-phospholipid interactions.

Full text

PDF
437

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir S. M., Mulrow N. J., Ingbar S. H. Phenol, a potent stimulator of adenylate cyclase in human thyroid membranes. Endocr Res Commun. 1981;8(2):83–95. doi: 10.1080/07435808109049840. [DOI] [PubMed] [Google Scholar]
  2. Andrews L. D., Cohen A. I. Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs. J Cell Biol. 1979 Apr;81(1):215–228. doi: 10.1083/jcb.81.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bakardjieva A., Galla H. J., Helmreich E. J. Modulation of the beta-receptor adenylate cyclase interactions in cultured Chang liver cells by phospholipid enrichment. Biochemistry. 1979 Jul 10;18(14):3016–3023. doi: 10.1021/bi00581a017. [DOI] [PubMed] [Google Scholar]
  4. Blok M. C., Van Deenen L. L., De Gier J. The effect of cholesterol incorporation on the temperature dependence of water permeation through liposomal membranes prepared from phosphatidylcholines. Biochim Biophys Acta. 1977 Feb 4;464(3):509–518. doi: 10.1016/0005-2736(77)90026-8. [DOI] [PubMed] [Google Scholar]
  5. Brasitus T. A., Schachter D. Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes. Biochemistry. 1980 Jun 10;19(12):2763–2769. doi: 10.1021/bi00553a035. [DOI] [PubMed] [Google Scholar]
  6. Bruni A., van Dijck P. W., de Gier J. The role of phospholipid acyl chains in the activation of mitochondrial ATPase complex. Biochim Biophys Acta. 1975 Oct 6;406(2):315–328. doi: 10.1016/0005-2736(75)90013-9. [DOI] [PubMed] [Google Scholar]
  7. Chandramouli V., Carter J. R., Jr Cell membrane changes in chronically diabetic rats. Diabetes. 1975 Mar;24(3):257–262. doi: 10.2337/diab.24.3.257. [DOI] [PubMed] [Google Scholar]
  8. Cherry R. J., Müller U., Holenstein C., Heyn M. P. Lateral segregation of proteins induced by cholesterol in bacteriorhodopsin-phospholipid vesicles. Biochim Biophys Acta. 1980 Feb 15;596(1):145–151. doi: 10.1016/0005-2736(80)90179-0. [DOI] [PubMed] [Google Scholar]
  9. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  10. Crain R. C., Zilversmit D. B. Two nonspecific phospholipid exchange proteins from beef liver. I. Purification and characterization. Biochemistry. 1980 Apr 1;19(7):1433–1439. doi: 10.1021/bi00548a026. [DOI] [PubMed] [Google Scholar]
  11. Cress A. E., Gerner E. W. Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture. Nature. 1980 Feb 14;283(5748):677–679. doi: 10.1038/283677a0. [DOI] [PubMed] [Google Scholar]
  12. Demel R. A., Jansen J. W., van Dijck P. W., van Deenen L. L. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta. 1977 Feb 14;465(1):1–10. doi: 10.1016/0005-2736(77)90350-9. [DOI] [PubMed] [Google Scholar]
  13. Dipple I., Houslay M. D. The activity of glucagon-stimulated adenylate cyclase from rat liver plasma membranes is modulated by the fluidity of its lipid environment. Biochem J. 1978 Jul 15;174(1):179–190. doi: 10.1042/bj1740179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Emmelot P., Van Hoeven R. P. Phospholipid unsaturation and plasma membrane organization. Chem Phys Lipids. 1975 May;14(3):236–246. doi: 10.1016/0009-3084(75)90005-5. [DOI] [PubMed] [Google Scholar]
  15. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  16. Ghiselli G., Sirtori C. R., Nicosia S. Effect of serum lipoproteins on the adenylate cyclase activity of rat liver plasma membranes. Biochem J. 1981 Jun 15;196(3):899–902. doi: 10.1042/bj1960899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gordon L. M., Sauerheber R. D., Esgate J. A., Dipple I., Marchmont R. J., Houslay M. D. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem. 1980 May 25;255(10):4519–4527. [PubMed] [Google Scholar]
  18. Gordon L. M., Sauerheber R. D., Esgate J. A. Spin label studies on rat liver and heart plasma membranes: effects of temperature, calcium, and lanthanum on membrane fluidity. J Supramol Struct. 1978;9(3):299–326. doi: 10.1002/jss.400090303. [DOI] [PubMed] [Google Scholar]
  19. Gordon L. M., Sauerheber R. D. Studies on spin-labelled egg lecithin dispersions. Biochim Biophys Acta. 1977 Apr 1;466(1):34–43. doi: 10.1016/0005-2736(77)90206-1. [DOI] [PubMed] [Google Scholar]
  20. Houslay M. D., Dipple I., Elliott K. R. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase. Biochem J. 1980 Mar 15;186(3):649–658. doi: 10.1042/bj1860649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Houslay M. D., Dipple I., Gordon L. M. Phenobarbital selectively modulates the glucagon-stimulated activity of adenylate cyclase by depressing the lipid phase separation occurring in the outer half of the bilayer of liver plasma membranes. Biochem J. 1981 Sep 1;197(3):675–681. doi: 10.1042/bj1970675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Houslay M. D., Dipple I., Rawal S., Sauerheber R. D., Esgate J. A., Gordon L. M. Glucagon-stimulated adenylate cyclase detects a selective perturbation of the inner half of the liver plasma-membrane bilayer achieved by the local anaesthetic prilocaine. Biochem J. 1980 Jul 15;190(1):131–137. doi: 10.1042/bj1900131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Houslay M. D., Ellory J. C., Smith G. A., Hesketh T. R., Stein J. M., Warren G. B., Metcalfe J. C. Exchange of partners in glucagon receptor-adenylate cyclase complexes. Physical evidence for the independent, mobile receptor model. Biochim Biophys Acta. 1977 Jun 2;467(2):208–219. doi: 10.1016/0005-2736(77)90197-3. [DOI] [PubMed] [Google Scholar]
  24. Houslay M. D., Hesketh T. R., Smith G. A., Warren G. B., Metcalfe J. C. The lipid environment of the glucagon receptor regulates adenylate cyclase activity. Biochim Biophys Acta. 1976 Jun 17;436(2):495–504. doi: 10.1016/0005-2736(76)90211-x. [DOI] [PubMed] [Google Scholar]
  25. Houslay M. D., Metcalfe J. C., Warren G. B., Hesketh T. R., Smith G. A. The glucagon receptor of rat liver plasma membrane can couple to adenylate cyclase without activating it. Biochim Biophys Acta. 1976 Jun 17;436(2):489–494. doi: 10.1016/0005-2736(76)90210-8. [DOI] [PubMed] [Google Scholar]
  26. Houslay M. D. Mobile receptor and collision coupling mechanisms for the activation of adenylate cyclase by glucagon. Adv Cyclic Nucleotide Res. 1981;14:111–119. [PubMed] [Google Scholar]
  27. Houslay M. D., Palmer R. W. Changes in the form of Arrhenius plots of the activity of glucagon-stimulated adenylate cyclase and other hamster liver plasma-membrane enzymes occurring on hibernation. Biochem J. 1978 Sep 15;174(3):909–919. doi: 10.1042/bj1740909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hui S. W., Parsons D. F. Phase transition of plasma membranes of rat hepatocyte and hepatoma cells by electron diffraction. Cancer Res. 1976 Jun;36(6):1918–1923. [PubMed] [Google Scholar]
  29. Hui S. W., Stewart C. M., Carpenter M. P., Stewart T. P. Effects of cholesterol on lipid organization in human erythrocyte membrane. J Cell Biol. 1980 May;85(2):283–291. doi: 10.1083/jcb.85.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Insel P. A., Nirenberg P., Turnbull J., Shattil S. J. Relationships between membrane cholesterol, alpha-adrenergic receptors, and platelet function. Biochemistry. 1978 Nov 28;17(24):5269–5274. doi: 10.1021/bi00617a029. [DOI] [PubMed] [Google Scholar]
  31. Israelachvili J. N. Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta. 1977 Sep 5;469(2):221–225. doi: 10.1016/0005-2736(77)90185-7. [DOI] [PubMed] [Google Scholar]
  32. Johannsson A., Smith G. A., Metcalfe J. C. The effect of bilayer thickness on the activity of (Na+ + K+)-ATPase. Biochim Biophys Acta. 1981 Mar 6;641(2):416–421. doi: 10.1016/0005-2736(81)90498-3. [DOI] [PubMed] [Google Scholar]
  33. Johnson L. W., Zilversmit D. B. Catalytic properties of phospholipid exchange protein from bovine heart. Biochim Biophys Acta. 1975 Jan 28;375(2):165–175. doi: 10.1016/0005-2736(75)90186-8. [DOI] [PubMed] [Google Scholar]
  34. Kimelberg H. K., Papahadjopoulos D. Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase. J Biol Chem. 1974 Feb 25;249(4):1071–1080. [PubMed] [Google Scholar]
  35. Kleemann W., McConnell H. M. Interactions of proteins and cholesterol with lipids in bilayer membranes. Biochim Biophys Acta. 1976 Jan 21;419(2):206–222. doi: 10.1016/0005-2736(76)90347-3. [DOI] [PubMed] [Google Scholar]
  36. Klein I., Moore L., Pastan I. Effect of liposomes containing cholesterol on adenylate cyclase activity of cultured mammalian fibroblasts. Biochim Biophys Acta. 1978 Jan 4;506(1):42–53. doi: 10.1016/0005-2736(78)90433-9. [DOI] [PubMed] [Google Scholar]
  37. Krall J. F., Leshon S. C., Frolich M., Korenman S. G. Activation of uterine smooth muscle adenylate cyclase by guanyl nucleotide. J Biol Chem. 1981 Jun 10;256(11):5436–5442. [PubMed] [Google Scholar]
  38. Ladbrooke B. D., Williams R. M., Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta. 1968 Apr 29;150(3):333–340. doi: 10.1016/0005-2736(68)90132-6. [DOI] [PubMed] [Google Scholar]
  39. Lee A. G. Lipid phase transitions and phase diagrams. II. Mictures involving lipids. Biochim Biophys Acta. 1977 Nov 14;472(3-4):285–344. doi: 10.1016/0304-4157(77)90001-6. [DOI] [PubMed] [Google Scholar]
  40. Livingstone C. J., Schachter D. Lipid dynamics and lipid-protein interactions in rat hepatocyte plasma membranes. J Biol Chem. 1980 Nov 25;255(22):10902–10908. [PubMed] [Google Scholar]
  41. Luly P., Shinitzky M. Gross structural changes in isolated liver cell plasma membranes upon binding of insulin. Biochemistry. 1979 Feb 6;18(3):445–450. doi: 10.1021/bi00570a009. [DOI] [PubMed] [Google Scholar]
  42. MORRISON W. R. A FAST, SIMPLE AND RELIABLE METHOD FOR THE MICRODETERMINATION OF PHOSPHORUS IN BIOLOGICAL MATERIALS. Anal Biochem. 1964 Feb;7:218–224. doi: 10.1016/0003-2697(64)90231-3. [DOI] [PubMed] [Google Scholar]
  43. Marchmont R. J., Ayad S. R., Houslay M. D. Purification and properties of the insulin-stimulated cyclic AMP phosphodiesterase from rat liver plasma membranes. Biochem J. 1981 Jun 1;195(3):645–652. doi: 10.1042/bj1950645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Montesano R. Inhomogeneous distribution of filipin-sterol complexes in smooth muscle cell plasma membrane. Nature. 1979 Jul 26;280(5720):328–329. doi: 10.1038/280328a0. [DOI] [PubMed] [Google Scholar]
  45. Nassar K., Cheng S., Levy D. The effect of diabetes on hepatocyte plasma membrane fluidity and concanavalin A-induced agglutination. Exp Cell Res. 1981 Mar;132(1):99–104. doi: 10.1016/0014-4827(81)90087-2. [DOI] [PubMed] [Google Scholar]
  46. Needham L., Houslay M. D. The activity of dopamine-stimulated adenylate cyclase from rat brain stratum is modulated by temperature and the bilayer-fluidizing agent, benzyl alcohol. Biochem J. 1982 Jul 15;206(1):89–95. doi: 10.1042/bj2060089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Needham L., Whetton A. D., Houslay M. D. The local anaesthetic and bilayer fluidising agent, benzyl alcohol decreases the thermostability of the integral membrane protein adenylate cyclase. FEBS Lett. 1982 Apr 5;140(1):85–88. doi: 10.1016/0014-5793(82)80526-7. [DOI] [PubMed] [Google Scholar]
  48. Orci L., Montesano R., Meda P., Malaisse-Lagae F., Brown D., Perrelet A., Vassalli P. Heterogeneous distribution of filipin--cholesterol complexes across the cisternae of the Golgi apparatus. Proc Natl Acad Sci U S A. 1981 Jan;78(1):293–297. doi: 10.1073/pnas.78.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Orly J., Schramm M. Fatty acids as modulators of membrane functions: catecholamine-activated adenylate cyclase of the turkey erythrocyte. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3433–3437. doi: 10.1073/pnas.72.9.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Pairault J., Levilliers J., Chapman M. J. Human serum lipoproteins activate adipocyte plasma membrane adenylate cyclase. Nature. 1977 Oct 13;269(5629):607–609. doi: 10.1038/269607a0. [DOI] [PubMed] [Google Scholar]
  51. Petitou M., Tuy F., Rosenfeld C. A simplified procedure for organic phosphorus determination from phospholipids. Anal Biochem. 1978 Nov;91(1):350–353. doi: 10.1016/0003-2697(78)90849-7. [DOI] [PubMed] [Google Scholar]
  52. Rene E., Pecker F., Stengel D., Hanoune J. Thermodependence of basal and stimulated rat liver adenylate cyclase. A re-evaluation. J Biol Chem. 1978 Feb 10;253(3):838–841. [PubMed] [Google Scholar]
  53. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  54. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  55. Rubalcava B., Rodbell M. The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase. J Biol Chem. 1973 Jun 10;248(11):3831–3837. [PubMed] [Google Scholar]
  56. Sauerheber R. D., Gordon L. M., Crosland R. D., Kuwahara M. D. Spin-label studies on rat liver and heart plasma membranes: do probe-probe interactions interfere with the measurement of membrane properties? J Membr Biol. 1977 Feb 24;31(1-2):131–169. doi: 10.1007/BF01869402. [DOI] [PubMed] [Google Scholar]
  57. Sinensky M., Minneman K. P., Molinoff P. B. Increased membrane acyl chain ordering activates adenylate cyclase. J Biol Chem. 1979 Sep 25;254(18):9135–9141. [PubMed] [Google Scholar]
  58. Sinha A. K., Shattil S. J., Colman R. W. Cyclic AMP metabolism in cholesterol-rich platelets. J Biol Chem. 1977 May 25;252(10):3310–3314. [PubMed] [Google Scholar]
  59. Stockton G. W., Smith I. C. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. Chem Phys Lipids. 1976 Oct;17(2-3):251–263. doi: 10.1016/0009-3084(76)90070-0. [DOI] [PubMed] [Google Scholar]
  60. Tolkovsky A. M., Levitzki A. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry. 1978 Sep 5;17(18):3795–3795. doi: 10.1021/bi00611a020. [DOI] [PubMed] [Google Scholar]
  61. Warren G. B., Houslay M. D., Metcalfe J. C., Birdsall N. J. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature. 1975 Jun 26;255(5511):684–687. doi: 10.1038/255684a0. [DOI] [PubMed] [Google Scholar]
  62. Whetton A. D., Johannsson A., Wilson S. R., Wallace A. V., Houslay M. D. The thermodependence of the activity of integral enzymes in liver plasma membranes: evidence consistent with a functionally asymmetric lipid bilayer. FEBS Lett. 1982 Jun 21;143(1):147–152. doi: 10.1016/0014-5793(82)80293-7. [DOI] [PubMed] [Google Scholar]
  63. Yeagle P. L., Hutton W. C., Huang C., Martin R. B. Phospholipid head-group conformations; intermolecular interactions and cholesterol effects. Biochemistry. 1977 Oct 4;16(20):4344–4349. doi: 10.1021/bi00639a003. [DOI] [PubMed] [Google Scholar]
  64. van Dijck P. W. Negatively charged phospholipids and their position in the cholesterol affinity sequence. Biochim Biophys Acta. 1979 Jul 19;555(1):89–101. doi: 10.1016/0005-2736(79)90074-9. [DOI] [PubMed] [Google Scholar]
  65. van den Besselaar A. M., van den Bosch H., van Deenen L. L. Transbilayer distribution and movement of lysophosphatidylcholine in liposomal membranes. Biochim Biophys Acta. 1977 Mar 17;465(3):454–465. doi: 10.1016/0005-2736(77)90264-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES