Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Feb 15;210(2):463–472. doi: 10.1042/bj2100463

The activation of Na+-dependent efflux of Ca2+ from liver mitochondria by glucagon and beta-adrenergic agonists.

T P Goldstone, R J Duddridge, M Crompton
PMCID: PMC1154245  PMID: 6134523

Abstract

The Na+-induced efflux of Ca2+ from liver mitochondria was activated by tissue pretreatment with 1 microM-adrenaline, 1 microM-isoprenaline, 10 nM-glucagon and 100 microM-cyclic AMP when 10 mM-lactate plus 1 mM-pyruvate were present in the perfusion medium. Infusion of the alpha 1-adrenergic agonist, phenylephrine (10 microM), was ineffective. The activation induced by the beta-adrenergic agonist, isoprenaline, was maximal after infusion of agonist for 2 min. The isoprenaline-induced activation was very marked (120-220%), with about 7 nmol of intramitochondrial Ca2+/mg of protein, but was not evident with greater than 15 nmol of Ca2+/mg. Ca2+ efflux in the absence of Na+ and in the presence of the Ca2+ ionophore A23187 was not affected by isoprenaline pretreatment over the range 6-23 nmol of internal Ca2+/mg. With 10 mM-lactate plus 1 mM-pyruvate in the perfusion medium, glucagon and isoprenaline infusion increased tissue cyclic AMP content about 8-fold and 3-fold respectively. With 10 mM-pyruvate alone, neither glucagon nor isoprenaline caused a significant increase in cyclic AMP. Omission of lactate also abolished the ability of glucagon, but not of isoprenaline, to activate the Na+-induced efflux of Ca2+. The data indicate that cyclic AMP may mediate the activation caused by glucagon, but provide no evidence that cyclic AMP is an obligatory link in the beta-adrenergic-induced activation.

Full text

PDF
463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Althaus-Salzmann M., Carafoli E., Jakob A. Ca2+, K+ redistributions and alpha-adrenergic activation of glycogenolysis in perfused rat livers. Eur J Biochem. 1980 May;106(1):241–248. doi: 10.1111/j.1432-1033.1980.tb06015.x. [DOI] [PubMed] [Google Scholar]
  2. Assimacopoulos-Jeannet F. D., Blackmore P. F., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase. J Biol Chem. 1977 Apr 25;252(8):2662–2669. [PubMed] [Google Scholar]
  3. Babcock D. F., Chen J. L., Yip B. P., Lardy H. A. Evidence for mitochondrial localization of the hormone-responsive pool of Ca2+ in isolated hepatocytes. J Biol Chem. 1979 Sep 10;254(17):8117–8120. [PubMed] [Google Scholar]
  4. Bardsley M. E., Brand M. D. Oxaloacetate- and acetoacetate-induced calcium efflux from mitochondria occurs by reversal of the uptake pathway. Biochem J. 1982 Jan 15;202(1):197–201. doi: 10.1042/bj2020197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barritt G. J., Parker J. C., Wadsworth J. C. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells. J Physiol. 1981 Mar;312:29–55. doi: 10.1113/jphysiol.1981.sp013614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blackmore P. F., Brumley F. T., Marks J. L., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Relationship between alpha-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J Biol Chem. 1978 Jul 25;253(14):4851–4858. [PubMed] [Google Scholar]
  7. Blackmore P. F., Dehaye J. P., Strickland W. G., Exton J. H. alpha-Adrenergic mobilization of hepatic mitochondrial calcium. FEBS Lett. 1979 Apr 1;100(1):117–120. doi: 10.1016/0014-5793(79)81144-8. [DOI] [PubMed] [Google Scholar]
  8. Borle A. B. Cyclic AMP stimulation of calcium efflux from isolated mitochondria: a negative report. J Membr Biol. 1976 Oct 20;29(1-2):209–210. doi: 10.1007/BF01868961. [DOI] [PubMed] [Google Scholar]
  9. Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clark M. G., Jarrett I. G. Responsiveness to glucagon by isolated rat hepatocytes controlled by the redox state of the cytosolic nicotinamide--adenine dinucleotide couple acting on adenosine 3':5'-cyclic monophosphate phosphodiesterase. Biochem J. 1978 Dec 15;176(3):805–816. doi: 10.1042/bj1760805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crompton M., Heid I., Baschera C., Carafoli E. The resolution of calcium fluxes in heart and liver mitochondria using the lanthanide series. FEBS Lett. 1979 Aug 15;104(2):352–354. doi: 10.1016/0014-5793(79)80850-9. [DOI] [PubMed] [Google Scholar]
  12. Crompton M., Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem. 1978 Nov 15;91(2):599–608. doi: 10.1111/j.1432-1033.1978.tb12713.x. [DOI] [PubMed] [Google Scholar]
  13. Crompton M., Künzi M., Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977 Oct 3;79(2):549–558. doi: 10.1111/j.1432-1033.1977.tb11839.x. [DOI] [PubMed] [Google Scholar]
  14. Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
  15. Crompton M. The sodium ion/calcium ion cycle of cardiac mitochondria. Biochem Soc Trans. 1980 Jun;8(3):261–262. doi: 10.1042/bst0080261. [DOI] [PubMed] [Google Scholar]
  16. Denton R. M., McCormack J. G. Calcium ions, hormones and mitochondrial metabolism. Clin Sci (Lond) 1981 Aug;61(2):135–140. doi: 10.1042/cs0610135. [DOI] [PubMed] [Google Scholar]
  17. Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Denton R. M., McCormack J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980 Sep 22;119(1):1–8. doi: 10.1016/0014-5793(80)80986-0. [DOI] [PubMed] [Google Scholar]
  19. Exton J. H., Mallette L. E., Jefferson L. S., Wong E. H., Friedmann N., Miller T. B., Jr, Park C. R. The hormonal control of hepatic gluconeogenesis. Recent Prog Horm Res. 1970;26:411–461. doi: 10.1016/b978-0-12-571126-5.50014-5. [DOI] [PubMed] [Google Scholar]
  20. Exton J. H. Mechanisms involved in alpha-adrenergic phenomena: role of calcium ions in actions of catecholamines in liver and other tissues. Am J Physiol. 1980 Jan;238(1):E3–12. doi: 10.1152/ajpendo.1980.238.1.E3. [DOI] [PubMed] [Google Scholar]
  21. Exton J. H., Robison G. A., Sutherland E. W., Park C. R. Studies on the role of adenosine 3',5'-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem. 1971 Oct 25;246(20):6166–6177. [PubMed] [Google Scholar]
  22. Fiskum G., Lehninger A. L. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J Biol Chem. 1979 Jul 25;254(14):6236–6239. [PubMed] [Google Scholar]
  23. Foden S., Randle P. J. Calcium metabolism in rat hepatocytes. Biochem J. 1978 Mar 15;170(3):615–625. doi: 10.1042/bj1700615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Goldstone T. P., Crompton M. Evidence for beta-adrenergic activation of Na+-dependent efflux of Ca2+ from isolated liver mitochondria. Biochem J. 1982 Apr 15;204(1):369–371. doi: 10.1042/bj2040369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Haworth R. A., Hunter D. R., Berkoff H. A. Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett. 1980 Feb 11;110(2):216–218. doi: 10.1016/0014-5793(80)80076-7. [DOI] [PubMed] [Google Scholar]
  27. Hayat L. H., Crompton M. Evidence for the existence of regulatory sites for Ca2+ on the Na+/Ca2+ carrier of cardiac mitochondria. Biochem J. 1982 Feb 15;202(2):509–518. doi: 10.1042/bj2020509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Heffron J. J., Harris E. J. Stimulation of calcium-ion efflux from liver mitochondria by sodium ions and its response to ADP and energy state. Biochem J. 1981 Mar 15;194(3):925–929. doi: 10.1042/bj1940925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hems D. A., McCormack J. G., Denton R. M. Activation of pyruvate dehydrogenase in the perfused rat liver by vasopressin. Biochem J. 1978 Nov 15;176(2):627–629. doi: 10.1042/bj1760627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hirata F., Strittmatter W. J., Axelrod J. beta-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci U S A. 1979 Jan;76(1):368–372. doi: 10.1073/pnas.76.1.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hue L., Van Schaftingen E., Blackmore P. F. Stimulation of glycolysis and accumulation of a stimulator of phosphofructokinase in hepatocytes incubated with vasopressin. Biochem J. 1981 Mar 15;194(3):1023–1026. doi: 10.1042/bj1941023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Keppens S., Vandenheede J. R., De Wulf H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta. 1977 Feb 28;496(2):448–457. doi: 10.1016/0304-4165(77)90327-0. [DOI] [PubMed] [Google Scholar]
  33. Kessar P., Crompton M. The alpha-adrenergic-mediated activation of Ca2+ influx into cardiac mitochondria. A possible mechanism for the regulation of intramitochondrial free CA2+. Biochem J. 1981 Nov 15;200(2):379–388. doi: 10.1042/bj2000379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Khoo J. C., Steinberg D. Stimulation of rat liver phosphorylase kinase by micromolar concentrations of Ca2+. FEBS Lett. 1975 Sep 1;57(1):68–72. doi: 10.1016/0014-5793(75)80154-2. [DOI] [PubMed] [Google Scholar]
  35. Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Maguire M. E., Erdos J. J. Inhibition of magnesium uptake by beta-adrenergic agonists and prostaglandin E1 is not mediated by cyclic AMP. J Biol Chem. 1980 Feb 10;255(3):1030–1035. [PubMed] [Google Scholar]
  37. McCormack J. G., Denton R. M. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J. 1980 Jul 15;190(1):95–105. doi: 10.1042/bj1900095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Murphy E., Coll K., Rich T. L., Williamson J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem. 1980 Jul 25;255(14):6600–6608. [PubMed] [Google Scholar]
  39. Nawrath H., Blei I., Gegner R. Opposite effects of beta-adrenoceptor stimulation and 8-bromo-cyclic AMP on potassium efflux in mammalian heart muscle. Experientia. 1980 Jan 15;36(1):72–74. doi: 10.1007/BF02003981. [DOI] [PubMed] [Google Scholar]
  40. Nedergaard J., Cannon B. Effects of monovalent cations on Ca2 transport in mitochondria; a comparison between brown fat and liver mitochondria from rat. Acta Chem Scand B. 1980;34(2):149–151. doi: 10.3891/acta.chem.scand.34b-0149. [DOI] [PubMed] [Google Scholar]
  41. Nicholls D. G., Brand M. D. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides. Biochem J. 1980 Apr 15;188(1):113–118. doi: 10.1042/bj1880113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nicholls D. G., Crompton M. Mitochondrial calcium transport. FEBS Lett. 1980 Mar 10;111(2):261–268. doi: 10.1016/0014-5793(80)80806-4. [DOI] [PubMed] [Google Scholar]
  43. Nicholls D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 1978 Nov 15;176(2):463–474. doi: 10.1042/bj1760463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Poggioli J., Berthon B., Claret M. Calcium movements in in situ mitochondria following activation of alpha-adrenergic receptors in rat liver cells. FEBS Lett. 1980 Jun 30;115(2):243–246. doi: 10.1016/0014-5793(80)81178-1. [DOI] [PubMed] [Google Scholar]
  45. Puskin J. S., Gunter T. E., Gunter K. K., Russell P. R. Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry. 1976 Aug 24;15(17):3834–3842. doi: 10.1021/bi00662a029. [DOI] [PubMed] [Google Scholar]
  46. Reinhart P. H., Taylor W. M., Bygrave F. L. A procedure for the rapid preparation of mitochondria from rat liver. Biochem J. 1982 Jun 15;204(3):731–735. doi: 10.1042/bj2040731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Roman I., Gmaj P., Nowicka C., Angielski S. Regulation of Ca2+ efflux from kidney and liver mitochondria by unsaturated fatty acids and Na+ ions. Eur J Biochem. 1979 Dec 17;102(2):615–623. doi: 10.1111/j.1432-1033.1979.tb04279.x. [DOI] [PubMed] [Google Scholar]
  48. Roos I., Crompton M., Carafoli E. The role of inorganic phosphate in the release of Ca2+ from rat-liver mitochondria. Eur J Biochem. 1980 Sep;110(2):319–325. doi: 10.1111/j.1432-1033.1980.tb04870.x. [DOI] [PubMed] [Google Scholar]
  49. Scarpa A., Malmstrom K., Chiesi M., Carafoli E. On the problem of the release of mitochondrial calcium by cyclic AMP. J Membr Biol. 1976 Oct 20;29(1-2):205–208. doi: 10.1007/BF01868960. [DOI] [PubMed] [Google Scholar]
  50. Sherline P., Lynch A., Glinsmann W. H. Cyclic AMP and adrenergic receptor control of rat liver glycogen metabolism. Endocrinology. 1972 Sep;91(3):680–690. doi: 10.1210/endo-91-3-680. [DOI] [PubMed] [Google Scholar]
  51. Sugano T., Shiota M., Tanaka T., Miyamae Y., Shimada M., Oshino N. Intracellular redox state and stimulation of gluconeogenesis by glucagon and norepinephrine in the perfused rat liver. J Biochem. 1980 Jan;87(1):153–166. doi: 10.1093/oxfordjournals.jbchem.a132721. [DOI] [PubMed] [Google Scholar]
  52. Sutherland E. W., Robison G. A. The role of cyclic-3',5'-AMP in responses to catecholamines and other hormones. Pharmacol Rev. 1966 Mar;18(1):145–161. [PubMed] [Google Scholar]
  53. Taylor W. M., Bygrave F. L., Blackmore P. F., Exton J. H. Stable enhancement of ruthenium red-insensitive calcium transport in an endoplasmic reticulum-rich fraction following the exposure of isolated rat liver cells to glucagon. FEBS Lett. 1979 Aug 1;104(1):31–34. doi: 10.1016/0014-5793(79)81079-0. [DOI] [PubMed] [Google Scholar]
  54. Taylor W. M., Prpić V., Exton J. H., Bygrave F. L. Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with alpha-adrenergic agonists and with glucagon. Biochem J. 1980 May 15;188(2):443–450. doi: 10.1042/bj1880443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Taylor W. M., Reinhart P., Hunt N. H., Bygrave F. L. Role of 3',5'-cyclic AMP in glucagon-induced stimulation of ruthenium red-insensitive calcium transport in an endoplasmic reticulum-rich fraction of rat liver. FEBS Lett. 1980 Mar 24;112(1):92–96. doi: 10.1016/0014-5793(80)80136-0. [DOI] [PubMed] [Google Scholar]
  56. Vandenheede J. R., Keppens S., De Wulf H. Inactivation and reactivation of liver phosphorylase b kinase. Biochim Biophys Acta. 1977 Apr 12;481(2):463–470. doi: 10.1016/0005-2744(77)90279-0. [DOI] [PubMed] [Google Scholar]
  57. Waltenbaugh A. M., Friedmann N. Hormone sensitive calcium uptake by liver microsomes. Biochem Biophys Res Commun. 1978 May 30;82(2):603–608. doi: 10.1016/0006-291x(78)90917-8. [DOI] [PubMed] [Google Scholar]
  58. Wehrle J. P., Pedersen P. L. Phosphate transport in rat liver mitochondria. Properties of a Ca2+-activated uptake process in inverted inner membrane vesicles. J Biol Chem. 1979 Aug 10;254(15):7269–7275. [PubMed] [Google Scholar]
  59. Williamson D. H., Ilic V., Tordoff A. F., Ellington E. V. Interactions between vasopressin and glucagon on ketogenesis and oleate metabolism in isolated hepatocytes from fed rats. Biochem J. 1980 Feb 15;186(2):621–624. doi: 10.1042/bj1860621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Williamson J. R., Cooper R. H., Hoek J. B. Role of calcium in the hormonal regulation of liver metabolism. Biochim Biophys Acta. 1981 Dec 30;639(3-4):243–295. doi: 10.1016/0304-4173(81)90012-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES