Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Mar 15;210(3):945–948. doi: 10.1042/bj2100945

Polyamine starvation causes accumulation of cadaverine and its derivatives in a polyamine-dependent strain of Chinese-hamster ovary cells.

E Hölttä, P Pohjanpelto
PMCID: PMC1154311  PMID: 6409084

Abstract

Starvation of the polyamine-dependent Chinese-hamster ovary cells for ornithine or ornithine-derived polyamines in serum-free culture resulted in the formation of cadaverine and its aminopropyl derivatives, N-(3-aminopropyl)cadaverine and NN'-bis(3-aminopropyl)cadaverine. The synthesis of these unusual amines was inhibited by treatment of the cells with DL-2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17). In the absence of ornithine (the normal substrate), ornithine decarboxylase thus appeared to catalyse the decarboxylation of lysine to cadaverine. Cell proliferation was markedly inhibited by ornithine deprivation of the cells, and further depressed by exposure of the cultures to difluoromethylornithine.

Full text

PDF
945

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alhonen-Hongisto L., Seppänen P., Hölttä E., Jänne J. Replacement of natural polyamines by cadaverine and its aminopropyl derivatives in Ehrlich ascites carcinoma cells. Biochem Biophys Res Commun. 1982 May 31;106(2):291–297. doi: 10.1016/0006-291x(82)91108-1. [DOI] [PubMed] [Google Scholar]
  2. Alhonen-Hongisto L., Veijalainen P., Ek-Kommonen C., Jänne J. Polyamines in mycoplasmas and in mycoplasma-infected tumour cells. Biochem J. 1982 Jan 15;202(1):267–270. doi: 10.1042/bj2020267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dion A. S., Cohen S. S. Polyamine stimulation of nucleic acid synthesis in an uninfected and phage-infected polyamine auxotroph of Escherichia coli K12 (arginine-agmatine ureohydrolase-putrescine-spermidine-lysine-cadaverine). Proc Natl Acad Sci U S A. 1972 Jan;69(1):213–217. doi: 10.1073/pnas.69.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  5. Henningsson S., Persson L., Rosengren E. Biosynthesis of cadaverine in mice under the influence of an anabolic steroid. Acta Physiol Scand. 1976 Dec;98(4):445–449. doi: 10.1111/j.1748-1716.1976.tb10334.x. [DOI] [PubMed] [Google Scholar]
  6. Hölttä E., Jänne J., Hovi T. Suppression of the formation of polyamines and macromolecules by DL-alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) in phytohaemagglutinin-activated human lymphocytes. Biochem J. 1979 Jan 15;178(1):109–117. doi: 10.1042/bj1780109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hölttä E., Pohjanpelto P. Polyamine dependence of Chinese hamster ovary cells in serum-free culture is due to deficient arginase activity. Biochim Biophys Acta. 1982 Dec 30;721(4):321–327. doi: 10.1016/0167-4889(82)90085-4. [DOI] [PubMed] [Google Scholar]
  8. Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  9. MASTER R. W. POSSIBLE SYNTHESIS OF POLYRIBONUCLEOTIDES OF KNOWN BASE-TRIPLET SEQUENCES. Nature. 1965 Apr 3;206:93–93. doi: 10.1038/206093b0. [DOI] [PubMed] [Google Scholar]
  10. Paulus T. J., Kiyono P., Davis R. H. Polyamine-deficient Neurospora crassa mutants and synthesis of cadaverine. J Bacteriol. 1982 Oct;152(1):291–297. doi: 10.1128/jb.152.1.291-297.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pegg A. E., McGill S. Decarboxylation of ornithine and lysine in rat tissues. Biochim Biophys Acta. 1979 Jun 6;568(2):416–427. doi: 10.1016/0005-2744(79)90310-3. [DOI] [PubMed] [Google Scholar]
  12. Pegg A. E., Shuttleworth K., Hibasami H. Specificity of mammalian spermidine synthase and spermine synthase. Biochem J. 1981 Aug 1;197(2):315–320. doi: 10.1042/bj1970315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Persson L. Decarboxylation of ornithine and lysine by ornithine decarboxylase from kidneys of testosterone treated mice. Acta Chem Scand B. 1981;35(6):451–459. doi: 10.3891/acta.chem.scand.35b-0451. [DOI] [PubMed] [Google Scholar]
  14. Pohjanpelto P., Knuutila S. Polyamine deprivation causes major chromosome aberrations in a polyamine-dependent Chinese hamster ovary cell line. Exp Cell Res. 1982 Oct;141(2):333–339. doi: 10.1016/0014-4827(82)90221-x. [DOI] [PubMed] [Google Scholar]
  15. Pohjanpelto P., Virtanen I., Hölttä E. Polyamine starvation causes disappearance of actin filaments and microtubules in polyamine-auxotrophic CHO cells. Nature. 1981 Oct 8;293(5832):475–477. doi: 10.1038/293475a0. [DOI] [PubMed] [Google Scholar]
  16. Rosengren E., Henningsson A. C., Henningsson S., Persson L. Polyamine metabolism as related to growth and hormones. Med Biol. 1981 Dec;59(5-6):320–326. [PubMed] [Google Scholar]
  17. Russell W. C., Newman C., Williamson D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature. 1975 Feb 6;253(5491):461–462. doi: 10.1038/253461a0. [DOI] [PubMed] [Google Scholar]
  18. Seiler N. Use of the dansyl reaction in biochemical analysis. Methods Biochem Anal. 1970;18:259–337. doi: 10.1002/9780470110362.ch5. [DOI] [PubMed] [Google Scholar]
  19. Steglich C., Scheffler I. E. An ornithine decarboxylase-deficient mutant of Chinese hamster ovary cells. J Biol Chem. 1982 Apr 25;257(8):4603–4609. [PubMed] [Google Scholar]
  20. Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES