Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Mar 15;210(3):949–952. doi: 10.1042/bj2100949

Relationship between fatty-acyl composition of diacylgalactosylglycerol and turnover of chloroplast phosphatidate.

S E Gardiner, P G Roughan
PMCID: PMC1154312  PMID: 6870812

Abstract

Chloroplasts from plants that contain different proportions of the 2-hexadecatrienoyl-1-linolenoyl molecular species in total diacylgalactosylglycerol were examined for their ability to dephosphorylate phosphatidate that had been labelled in situ with [1-14C]acetate. The turnover rate of chloroplast phosphatidate may be related to the accumulation of a prokaryotic diacylgalactosylglycerol, suggesting that chloroplast phosphatidate phosphatase controls the fatty acyl composition of the diacylgalactosylglycerol synthesized in the intact plant.

Full text

PDF
949

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hajra A. K. On extraction of acyl and alkyl dihydroxyacetone phosphate from incubation mixtures. Lipids. 1974 Aug;9(8):502–505. doi: 10.1007/BF02532495. [DOI] [PubMed] [Google Scholar]
  3. Joyard J., Douce R. Characterization of phosphatidate phosphohydrolase activity associated with chloroplast envelope membranes. FEBS Lett. 1979 Jun 1;102(1):147–150. doi: 10.1016/0014-5793(79)80947-3. [DOI] [PubMed] [Google Scholar]
  4. McKee J. W., Hawke J. C. The incorporation of [14C]acetate into the constituent fatty acids of monogalactosyldiglyceride by isolated spinach chloroplasts. Arch Biochem Biophys. 1979 Oct 1;197(1):322–332. doi: 10.1016/0003-9861(79)90252-2. [DOI] [PubMed] [Google Scholar]
  5. Nakatani H. Y., Barber J. An improved method for isolating chloroplasts retaining their outer membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):500–512. [PubMed] [Google Scholar]
  6. Roughan P. G., Holland R., Slack C. R. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts. Biochem J. 1979 Nov 15;184(2):193–202. doi: 10.1042/bj1840193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Roughan P. G., Holland R., Slack C. R. The role of chloroplasts and microsomal fractions in polar-lipid synthesis from [1-14C]acetate by cell-free preparations from spinach (Spinacia oleracea) leaves. Biochem J. 1980 Apr 15;188(1):17–24. doi: 10.1042/bj1880017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Roughan P. G., Mudd J. B., McManus T. T., Slack C. R. Linoleate and alpha-linolenate synthesis by isolated spinach (Spinacia oleracea) chloroplasts. Biochem J. 1979 Dec 15;184(3):571–574. doi: 10.1042/bj1840571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Safford R., Nichols B. W. Positional distribution of fatty acids in monogalactosyl diglyceride fractions from leaves and algae. Structural and metabolic studies. Biochim Biophys Acta. 1970 Jun 9;210(1):57–64. doi: 10.1016/0005-2760(70)90061-5. [DOI] [PubMed] [Google Scholar]
  10. Sato N., Murata N., Miura Y., Ueta N. Effect of growth temperature on lipid and fatty acid compositions in the blue-green algae, Anabaena variabilis and Anacystis nidulans. Biochim Biophys Acta. 1979 Jan 29;572(1):19–28. [PubMed] [Google Scholar]
  11. Siebertz H. P., Heinz E., Joyard J., Douce R. Labelling in vivo and in vitro of molecular species of lipids from chloroplast envelopes and thylakoids. Eur J Biochem. 1980;108(1):177–185. doi: 10.1111/j.1432-1033.1980.tb04710.x. [DOI] [PubMed] [Google Scholar]
  12. Slack C. R., Roughan P. G. The kinetics of incorporation in vivo of (14C)acetate and (14C)carbon dioxide into the fatty acids of glycerolipids in developing leaves. Biochem J. 1975 Nov;152(2):217–228. doi: 10.1042/bj1520217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Willemot C., Slack C. R., Browse J., Roughan P. G. Effect of BASF 13-338, a Substituted Pyridazinone, on Lipid Metabolism in Leaf Tissue of Spinach, Pea, Linseed, and Wheat. Plant Physiol. 1982 Jul;70(1):78–81. doi: 10.1104/pp.70.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES