Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 May 1;211(2):349–356. doi: 10.1042/bj2110349

Hereditary spherocytosis of man. Defective cytoskeletal interactions in the erythrocyte membrane.

W H Sawyer, J S Hill, G J Howlett, J S Wiley
PMCID: PMC1154366  PMID: 6870835

Abstract

Hereditary spherocytosis (HS) is an inherited abnormality of red cell shape and results from defective interactions amongst the components of the cytoskeleton. It is known that spectrin/actin dissociates in low ionic strength media from ghosts and cytoskeletons at a rate which is slower for HS than normal preparations. Hybridization experiments have established that this behaviour is not due to a defective spectrin or actin but resides in a spectrin-binding component of the membrane [Hill, Sawyer, Howlett & Wiley (1981) Biochem. J. 201, 259-266]. In the present study erythrocyte shells have been examined in low ionic strength media and a similar difference in the rate of solubilization has been revealed. Since band 4.1 (but not band 2.1) is a common component of cytoskeletons and shells it is possible that 4.1 may be abnormal in the HS condition. The interaction of band 4.1 with spectrin/actin was examined by low shear falling ball viscometry. The addition of a mixture of band 2.1 and 4.1 to a solution of actin and spectrin tetramer increased the viscosity due to cross-linking of the cytoskeletal elements by band 4.1. When band 2.1/4.1 mixtures were derived from five HS families the viscosity was increased to a greater extent than in the normal controls. This difference was not a result of alterations in the calcium dependence of the spectrin/actin-band 4.1 interaction. The results imply that band 4.1 may be defective in the HS condition.

Full text

PDF
349

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Tyler J. M. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1259–1265. [PubMed] [Google Scholar]
  2. Baskin G. S., Langdon R. G. A spectrin-dependent ATPase of the human erythrocyte membrane. J Biol Chem. 1981 Jun 10;256(11):5428–5435. [PubMed] [Google Scholar]
  3. Beaven G. H., Gratzer W. B. Interaction of divalent cations with human red cell cytoskeletons. Biochim Biophys Acta. 1980 Jul 16;600(1):140–149. doi: 10.1016/0005-2736(80)90419-8. [DOI] [PubMed] [Google Scholar]
  4. Bennett V., Branton D. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J Biol Chem. 1977 Apr 25;252(8):2753–2763. [PubMed] [Google Scholar]
  5. Bennett V., Stenbuck P. J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1979 Apr 10;254(7):2533–2541. [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  8. Brenner S. L., Korn E. D. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin. J Biol Chem. 1979 Sep 10;254(17):8620–8627. [PubMed] [Google Scholar]
  9. Calvert P. D., Nichol L. W., Sawyer W. H. Binding equations for interacting systems comprising multivalent acceptor and bivalent ligand: application to antigen-antibody systems. J Theor Biol. 1979 Sep 21;80(2):233–247. doi: 10.1016/0022-5193(79)90208-x. [DOI] [PubMed] [Google Scholar]
  10. Cohen C. M., Foley S. F. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane. J Cell Biol. 1980 Aug;86(2):694–698. doi: 10.1083/jcb.86.2.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cohen C. M., Korsgren C. Band 4.1 causes spectrin-actin gels to become thixiotropic. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1429–1435. doi: 10.1016/s0006-291x(80)80025-8. [DOI] [PubMed] [Google Scholar]
  12. Fowler V., Taylor D. L. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980 May;85(2):361–376. doi: 10.1083/jcb.85.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodman S. R., Yu J., Whitfield C. F., Culp E. N., Posnak E. J. Erythrocyte membrane skeletal protein bands 4.1 a and b are sequence-related phosphoproteins. J Biol Chem. 1982 Apr 25;257(8):4564–4569. [PubMed] [Google Scholar]
  14. Gratzer W. B. The red cell membrane and its cytoskeleton. Biochem J. 1981 Jul 15;198(1):1–8. doi: 10.1042/bj1980001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greenquist A. C., Shohet S. B. Phosphorylation in erythrocyte membranes from abnormally shaped cells. Blood. 1976 Dec;48(6):877–886. [PubMed] [Google Scholar]
  16. Griffith L. M., Pollard T. D. Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins. J Cell Biol. 1978 Sep;78(3):958–965. doi: 10.1083/jcb.78.3.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hill J. S., Sawyer W. H., Howlett G. J., Wiley J. S. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane. Biochem J. 1982 Feb 1;201(2):259–266. doi: 10.1042/bj2010259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LaCelle P. L. Alteration of membrane deformability in hemolytic anemias. Semin Hematol. 1970 Oct;7(4):355–371. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Luna E. J., Kidd G. H., Branton D. Identification by peptide analysis of the spectrin-binding protein in human erythrocytes. J Biol Chem. 1979 Apr 10;254(7):2526–2532. [PubMed] [Google Scholar]
  21. Lux S. E. Dissecting the red cell membrane skeleton. Nature. 1979 Oct 11;281(5731):426–429. doi: 10.1038/281426a0. [DOI] [PubMed] [Google Scholar]
  22. Maruyama K. Effects of trace amounts of Ca2+ and Mg2+ on the polymerization of actin. Biochim Biophys Acta. 1981 Jan 30;667(1):139–142. doi: 10.1016/0005-2795(81)90074-x. [DOI] [PubMed] [Google Scholar]
  23. Murphy J. R. The influence of pH and temperature on some physical properties of normal erythrocytes and erythrocytes from patients with hereditary spherocytosis. J Lab Clin Med. 1967 May;69(5):758–775. [PubMed] [Google Scholar]
  24. Palek J., Liu S. C. Dependence of spectrin organization in red blood cell membranes on cell metabolism: implications for control of red cell shape, deformability, and surface area. Semin Hematol. 1979 Jan;16(1):75–93. [PubMed] [Google Scholar]
  25. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  26. Pinder J. C., Bray D., Gratzer W. B. Control of interaction of spectrin and actin by phosphorylation. Nature. 1977 Dec 22;270(5639):752–754. doi: 10.1038/270752a0. [DOI] [PubMed] [Google Scholar]
  27. Plut D. A., Hosey M. M., Tao M. Evidence for the participation of cytosolic protein kinases in membrane phosphorylation in intact erythrocytes. Eur J Biochem. 1978 Jan 16;82(2):333–337. doi: 10.1111/j.1432-1033.1978.tb12027.x. [DOI] [PubMed] [Google Scholar]
  28. Sheetz M. P., Casaly J. 2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons. J Biol Chem. 1980 Oct 25;255(20):9955–9960. [PubMed] [Google Scholar]
  29. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  30. Steck T. L., Fairbanks G., Wallach D. F. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry. 1971 Jun 22;10(13):2617–2624. doi: 10.1021/bi00789a031. [DOI] [PubMed] [Google Scholar]
  31. Thompson S., Maddy A. H. The abnormal phosphorylation of spectrin in human hereditary spherocytosis. Biochim Biophys Acta. 1981 Nov 20;649(1):31–37. doi: 10.1016/0005-2736(81)90005-5. [DOI] [PubMed] [Google Scholar]
  32. Tyler J. M., Hargreaves W. R., Branton D. Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5192–5196. doi: 10.1073/pnas.76.10.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ungewickell E., Bennett P. M., Calvert R., Ohanian V., Gratzer W. B. In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte. Nature. 1979 Aug 30;280(5725):811–814. doi: 10.1038/280811a0. [DOI] [PubMed] [Google Scholar]
  34. Wolfe L. C., Lux S. E. Membrane protein phosphorylation of intact normal and hereditary spherocytic erythrocytes. J Biol Chem. 1978 May 10;253(9):3336–3342. [PubMed] [Google Scholar]
  35. Zail S. S., van den Hoek A. K. The topology of red cell membrane lipids in hereditary spherocytosis. S Afr J Med Sci. 1975;40(3):67–72. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES