Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 May 1;211(2):473–479. doi: 10.1042/bj2110473

A fluorescent calmodulin that reports the binding of hydrophobic inhibitory ligands.

J D Johnson, L A Wittenauer
PMCID: PMC1154381  PMID: 6870843

Abstract

Ca2+ binding to calmodulin in the pCa range 5.5-7.0 exposes hydrophobic sites that bind hydrophobic inhibitory ligands, including calmodulin antagonists, some Ca2+-antagonists and calmodulin-binding proteins. The binding of these hydrophobic ligands to calmodulin can be followed by the approx. 80% fluorescence increase they produce in dansylated (5-dimethylaminonaphthalene-1-sulphonylated) calmodulin (CDRDANS). In the presence of Ca2+, calmodulin binds the calmodulin inhibitor, R24571, with an affinity of approx. 2-3 nM and hydrophobic ligands, including trifluoperazine (TFP), W-7 [N-(6-aminohexyl)-5-chloronaphthalene-1-sulphonamide], fendiline, felodipine and prenylamine, with affinities in the micromolar range. This binding is strongly Ca2+-dependent and Mg2+-independent. Calmodulin shows a reasonably high degree of specificity in its binding of these ligands over other ligands tested. CDRDANS, therefore, provides a convenient and simple means of monitoring the interaction of a variety of hydrophobic ligands with the Ca2+-dependent regulatory protein, calmodulin. CDRDANS binds to phospholipid vesicles made of (dimyristoyl)phosphatidylcholine (DMPC) or (dipalmitoyl)phosphatidylcholine (DPPC) and produces fluorescence increases only in the presence of Ca2+ and at temperatures above their gel-to-liquid crystalline phase transition. Although the fluorescence changes in CDRDANS accurately report phase transitions in these liposomes, its binding to these vesicles is weak. Calmodulin probably requires a high-affinity lipid-bound receptor protein for its high-affinity binding to natural membranes.

Full text

PDF
473

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrich M. P., Vanderkooi J. M. Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phophoslipid artificial membranes. Biochemistry. 1976 Mar 23;15(6):1257–1261. doi: 10.1021/bi00651a013. [DOI] [PubMed] [Google Scholar]
  2. Asano M., Suzuki Y., Hidaka H. Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J Pharmacol Exp Ther. 1982 Jan;220(1):191–196. [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Bostróm S. L., Ljung B., Mårdh S., Forsen S., Thulin E. Interaction of the antihypertensive drug felodipine with calmodulin. Nature. 1981 Aug 20;292(5825):777–778. doi: 10.1038/292777a0. [DOI] [PubMed] [Google Scholar]
  5. Brostrom C. O., Wolff D. J. Properties and functions of calmodulin. Biochem Pharmacol. 1981 Jun 15;30(12):1395–1405. doi: 10.1016/0006-2952(81)90358-0. [DOI] [PubMed] [Google Scholar]
  6. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  7. Crouch T. H., Holroyde M. J., Collins J. H., Solaro R. J., Potter J. D. Interaction of calmodulin with skeletal muscle myosin light chain kinase. Biochemistry. 1981 Oct 27;20(22):6318–6325. doi: 10.1021/bi00525a006. [DOI] [PubMed] [Google Scholar]
  8. Dedman J. R., Potter J. D., Jackson R. L., Johnson J. D., Means A. R. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem. 1977 Dec 10;252(23):8415–8422. [PubMed] [Google Scholar]
  9. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  10. Gietzen K., Wüthrich A., Bader H. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun. 1981 Jul 30;101(2):418–425. doi: 10.1016/0006-291x(81)91276-6. [DOI] [PubMed] [Google Scholar]
  11. Hidaka H., Yamaki T., Naka M., Tanaka T., Hayashi H., Kobayashi R. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol. 1980 Jan;17(1):66–72. [PubMed] [Google Scholar]
  12. Hidaka H., Yamaki T., Totsuka T., Asano M. Selective inhibitors of Ca2+-binding modulator of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction. Mol Pharmacol. 1979 Jan;15(1):49–59. [PubMed] [Google Scholar]
  13. Johnson J. D., Collins J. H., Potter J. D. Dansylaziridine-labeled troponin C. A fluorescent probe of Ca2+ binding to the Ca2+-specific regulatory sites. J Biol Chem. 1978 Sep 25;253(18):6451–6458. [PubMed] [Google Scholar]
  14. Johnson J. D., Holroyde M. J., Crouch T. H., Solaro R. J., Potter J. D. Fluorescence studies of the interaction of calmodulin with myosin light chain kinase. J Biol Chem. 1981 Dec 10;256(23):12194–12198. [PubMed] [Google Scholar]
  15. Kanamori M., Naka M., Asano M., Hidaka H. Effects of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J Pharmacol Exp Ther. 1981 May;217(2):494–499. [PubMed] [Google Scholar]
  16. Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Annu Rev Biochem. 1980;49:489–515. doi: 10.1146/annurev.bi.49.070180.002421. [DOI] [PubMed] [Google Scholar]
  17. LaPorte D. C., Wierman B. M., Storm D. R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980 Aug 5;19(16):3814–3819. doi: 10.1021/bi00557a025. [DOI] [PubMed] [Google Scholar]
  18. Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
  19. Levin R. M., Weiss B. Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins. Biochim Biophys Acta. 1978 May 3;540(2):197–204. doi: 10.1016/0304-4165(78)90132-0. [DOI] [PubMed] [Google Scholar]
  20. Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
  21. Tanaka T., Hidaka H. Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem. 1980 Dec 10;255(23):11078–11080. [PubMed] [Google Scholar]
  22. Walsh K. X., Millikin D. M., Schlender K. K., Reimann E. M. Stimulation of phosphorylase b kinase by the calcium-dependent regulator. J Biol Chem. 1980 Jun 10;255(11):5036–5042. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES