Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jun 1;211(3):617–623. doi: 10.1042/bj2110617

Purification, properties and assay of D-ribulose 5-phosphate 3-epimerase from human erythrocytes.

A Karmali, A F Drake, N Spencer
PMCID: PMC1154406  PMID: 6882362

Abstract

A direct assay procedure is described for D-ribulose 5-phosphate 3-epimerase (EC 5.1.3.1) which exploits differences in the c.d. spectra of substrate and product. The enzyme has been purified from human erythrocytes and was resolved by gel filtration and sucrose-density-gradient centrifugation into a major component of apparent Mr 45 000 and a minor component of Mr 23 000. Electrophoresis in sodium dodecyl sulphate gave a single component corresponding to Mr 23 000. Kinetic and sucrose-density-gradient centrifugation data indicate dissociation of the dimeric form of the enzyme into monomers of low specific activity; substrate favours the active dimeric form of the enzyme. At concentrations of the enzyme where both forms of the enzyme are present initial velocity data yielded a Hill plot with an interaction coefficient of approx. 2.0, indicating co-operative binding of substrate under these conditions.

Full text

PDF
617

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHWELL G., HICKMAN J. Enzymatic formation of xylulose 5-phosphate from ribose 5-phosphate in spleen. J Biol Chem. 1957 May;226(1):65–76. [PubMed] [Google Scholar]
  2. AXELROD B., JANG R. Purification and properties of phosphoribo-isomerase from alfalfa. J Biol Chem. 1954 Aug;209(2):847–855. [PubMed] [Google Scholar]
  3. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brownson C., Spencer N. Partial purification and properties of the two common inherited forms of human erythrocyte adenylate kinase. Biochem J. 1972 Dec;130(3):797–803. doi: 10.1042/bj1300797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DICKENS F., WILLIAMSON D. H. Pentose phosphate isomerase and epimerase from animal tissues. Biochem J. 1956 Nov;64(3):567–578. doi: 10.1042/bj0640567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frieden C., Colman R. F. Glutamate dehydrogenase concentration as a determinant in the effect of purine nucleotides on enzymatic activity. J Biol Chem. 1967 Apr 25;242(8):1705–1715. [PubMed] [Google Scholar]
  7. Frieden C. Protein-protein interaction and enzymatic activity. Annu Rev Biochem. 1971;40:653–696. doi: 10.1146/annurev.bi.40.070171.003253. [DOI] [PubMed] [Google Scholar]
  8. HORECKER B. L., HURWITZ J. The purification of phosphoketopentoepimerase from Lactobacillus pentosus and the preparation of xylulose 5-phosphate. J Biol Chem. 1956 Dec;223(2):993–1008. [PubMed] [Google Scholar]
  9. Hathaway G., Criddle R. S. Substrate-dependent association of lactic dehydrogenase subunits to active tetramer. Proc Natl Acad Sci U S A. 1966 Aug;56(2):680–685. doi: 10.1073/pnas.56.2.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kauffman F. C. The quantitative histochemistry of enzymes of the pentose phosphate pathway in the central nervous system of the rat. J Neurochem. 1972 Jan;19(1):1–9. doi: 10.1111/j.1471-4159.1972.tb01247.x. [DOI] [PubMed] [Google Scholar]
  11. Kiely M. E., Stuart A. L., Wood T. Partial purification and kinetic properties of ribose-5-phosphate ketol-isomerase and ribulose-5-phosphate 3-epimerase from various sources. Biochim Biophys Acta. 1973 Feb 15;293(2):534–541. doi: 10.1016/0005-2744(73)90360-4. [DOI] [PubMed] [Google Scholar]
  12. Kurganov B. I., Dorozhko A. K., Kagan Z. S., Yakovlev V. A. The theoretical analysis of kinetic behaviour of "hysteretic" allosteric enzymes. I. The kinetic manifestations of slow conformational change of an oligomeric enzyme in the Monod, Wyman and Changeux model. J Theor Biol. 1976 Aug 7;60(2):247–269. doi: 10.1016/0022-5193(76)90059-x. [DOI] [PubMed] [Google Scholar]
  13. Kurganov B. I., Dorozhko A. K., Kagan Z. S., Yakovlev V. A. The theoretical analysis of kinetic behaviour of kinetic behaviour of "hysteretic" allosteric enzymes. III. Dissociating and associating enzyme systems in which the rate of installation of equilibrium between the oligomeric forms in comparable to that of enzymatic reaction. J Theor Biol. 1976 Aug 7;60(2):287–299. doi: 10.1016/0022-5193(76)90061-8. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lindberg U. DNase-I inhibitor protein. Isolation with DNase-agarose. Methods Enzymol. 1974;34:517–523. doi: 10.1016/s0076-6879(74)34066-9. [DOI] [PubMed] [Google Scholar]
  16. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  17. Novello F., McLean P. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J. 1968 May;107(6):775–791. doi: 10.1042/bj1070775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Osborne W. R., Spencer N. Partial purification and properties of the common inherited forms of adenosine deaminase from human erythrocytes. Biochem J. 1973 May;133(1):117–123. doi: 10.1042/bj1330117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PONTREMOLI S., MANGIAROTTI G. A simple method for the preparation of D-ribulose 5-phosphate. J Biol Chem. 1962 Mar;237:643–645. [PubMed] [Google Scholar]
  20. Savage B., Spencer N. Partial purification and properties of purine nucleoside phosphorylase from rabbit erythrocytes. Biochem J. 1977 Dec 1;167(3):703–710. doi: 10.1042/bj1670703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spencer N., Hopkinson D. A. Biochemical genetics of the pentose phosphate cycle: human ribose 5-phosphate isomerase (RPI) and ribulose 5-phosphate 3-epimerase (RPE). Ann Hum Genet. 1980 May;43(4):335–342. doi: 10.1111/j.1469-1809.1980.tb01567.x. [DOI] [PubMed] [Google Scholar]
  22. TABACHNICK M., SRERE P. A., COOPER J., RACKER E. The oxidative pentose phosphate cycle. III. The interconversion of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate. Arch Biochem Biophys. 1958 Apr;74(2):315–325. doi: 10.1016/0003-9861(58)90003-1. [DOI] [PubMed] [Google Scholar]
  23. Vanquickenborne A., Phillips A. T. Purification and regulatory properties of the adenosine diphosphate-activated threonine dehydratase. J Biol Chem. 1968 Mar 25;243(6):1312–1319. [PubMed] [Google Scholar]
  24. Wang C. T., Weissmann B. Association-dissociation and abnormal kinetics of bovine alpha-acetylgalactosaminidase. Biochemistry. 1971 Mar 16;10(6):1067–1072. [PubMed] [Google Scholar]
  25. Wood T. Assay for D-ribose-5-phosphate ketol isomerase and D-ribulose-5-phosphate 3-epimerase. Methods Enzymol. 1975;41:63–66. doi: 10.1016/s0076-6879(75)41016-3. [DOI] [PubMed] [Google Scholar]
  26. Wood T. Purification and properties of D-ribulose-5-phosphate 3-epimerase from calf liver. Biochim Biophys Acta. 1979 Oct 11;570(2):352–362. doi: 10.1016/0005-2744(79)90155-4. [DOI] [PubMed] [Google Scholar]
  27. Wood T. Spectrophotometric ass for D-ribose-5-phosphateketol-isomerase and for D-ribulose-5-phosphate 3-epimerase. Anal Biochem. 1970 Feb;33(2):297–306. doi: 10.1016/0003-2697(70)90300-3. [DOI] [PubMed] [Google Scholar]
  28. Wood T. Spontaneous changes in the ultraviolet absorption spectrum of D-ribulose (D-erythro-pentulose) 5-phosphate. Carbohydr Res. 1975 Apr;40(02):407–413. doi: 10.1016/s0008-6215(00)82626-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES